IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v45y2018i10p1756-1769.html
   My bibliography  Save this article

Bayesian estimation of logistic regression with misclassified covariates and response

Author

Listed:
  • Brandi N. Falley
  • James D. Stamey
  • A. Alexander Beaujean

Abstract

Measurement error is a commonly addressed problem in psychometrics and the behavioral sciences, particularly where gold standard data either does not exist or are too expensive. The Bayesian approach can be utilized to adjust for the bias that results from measurement error in tests. Bayesian methods offer other practical advantages for the analysis of epidemiological data including the possibility of incorporating relevant prior scientific information and the ability to make inferences that do not rely on large sample assumptions. In this paper we consider a logistic regression model where both the response and a binary covariate are subject to misclassification. We assume both a continuous measure and a binary diagnostic test are available for the response variable but no gold standard test is assumed available. We consider a fully Bayesian analysis that affords such adjustments, accounting for the sources of error and correcting estimates of the regression parameters. Based on the results from our example and simulations, the models that account for misclassification produce more statistically significant results, than the models that ignore misclassification. A real data example on math disorders is considered.

Suggested Citation

  • Brandi N. Falley & James D. Stamey & A. Alexander Beaujean, 2018. "Bayesian estimation of logistic regression with misclassified covariates and response," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(10), pages 1756-1769, July.
  • Handle: RePEc:taf:japsta:v:45:y:2018:i:10:p:1756-1769
    DOI: 10.1080/02664763.2017.1391182
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2017.1391182
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2017.1391182?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chinyereugo M Umemneku Chikere & Kevin Wilson & Sara Graziadio & Luke Vale & A Joy Allen, 2019. "Diagnostic test evaluation methodology: A systematic review of methods employed to evaluate diagnostic tests in the absence of gold standard – An update," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-25, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:45:y:2018:i:10:p:1756-1769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.