IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v44y2017i7p1296-1317.html
   My bibliography  Save this article

Bivariate multilevel models for the analysis of mathematics and reading pupils' achievements

Author

Listed:
  • C. Masci
  • F. Ieva
  • T. Agasisti
  • A. M. Paganoni

Abstract

The purpose of this paper is to identify a relationship between pupils' mathematics and reading test scores and the characteristics of students themselves, stratifying for classes, schools and geographical areas. The data set of interest contains detailed information about more than 500,000 students at the first year of junior secondary school in the year 2012/2013, provided by the Italian Institute for the Evaluation of Educational System. The innovation of this work is in the use of multivariate multilevel models, in which the outcome is bivariate: reading and mathematics achievement. Using the bivariate outcome enables researchers to analyze the correlations between achievement levels in the two fields and to predict statistically significant school and class effects after adjusting for pupil's characteristics. The statistical model employed here explicates account for the potential covariance between the two topics, and at the same time it allows the school effect to vary among them. The results show that while for most cases the direction of school's effect is coherent for reading and mathematics (i.e. positive/negative), there are cases where internal school factors lead to different performances in the two fields.

Suggested Citation

  • C. Masci & F. Ieva & T. Agasisti & A. M. Paganoni, 2017. "Bivariate multilevel models for the analysis of mathematics and reading pupils' achievements," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(7), pages 1296-1317, May.
  • Handle: RePEc:taf:japsta:v:44:y:2017:i:7:p:1296-1317
    DOI: 10.1080/02664763.2016.1201799
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1201799
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1201799?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pedro Luis do N. Silva & Fernando Antônio da S. Moura, 2022. "Fitting multivariate multilevel models under informative sampling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1663-1678, October.
    2. Masci, Chiara & Johnes, Geraint & Agasisti, Tommaso, 2018. "Student and school performance across countries: A machine learning approach," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1072-1085.
    3. Chiara Masci & Francesca Ieva & Tommaso Agasisti & Anna Maria Paganoni, 2021. "Evaluating class and school effects on the joint student achievements in different subjects: a bivariate semiparametric model with random coefficients," Computational Statistics, Springer, vol. 36(4), pages 2337-2377, December.
    4. Camanho, Ana S. & Varriale, Luisa & Barbosa, Flávia & Sobral, Thiago, 2021. "Performance assessment of upper secondary schools in Italian regions using a circular pseudo-Malmquist index," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1188-1208.
    5. Francesco Schirripa Spagnolo & Nicola Salvati & Antonella D’Agostino & Ides Nicaise, 2020. "The use of sampling weights in M‐quantile random‐effects regression: an application to Programme for International Student Assessment mathematics scores," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 991-1012, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:44:y:2017:i:7:p:1296-1317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.