IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v44y2017i16p2837-2857.html
   My bibliography  Save this article

Fractionally integrated GARCH model with tempered stable distribution: a simulation study

Author

Listed:
  • L. Feng
  • Y. Shi

Abstract

With the growing availability of high-frequency data, long memory has become a popular topic in finance research. Fractionally Integrated GARCH (FIGARCH) model is a standard approach to study the long memory of financial volatility. The original specification of FIGARCH model is developed using Normal distribution, which cannot accommodate fat-tailed properties commonly existing in financial time series. Traditionally, the Student-t distribution and General Error Distribution (GED) are used instead to solve that problem. However, a recent study points out that the Student-t lacks stability. Instead, the Stable distribution is introduced. The issue of this distribution is that its second moment does not exist. To overcome this new problem, the tempered stable distribution, which retains most attractive characteristics of the Stable distribution and has defined moments, is a natural candidate. In this paper, we describe the estimation procedure of the FIGARCH model with tempered stable distribution and conduct a series of simulation studies to demonstrate that it consistently outperforms FIGARCH models with the Normal, Student-t and GED distributions. An empirical evidence of the S&P 500 hourly return is also provided with robust results. Therefore, we argue that the tempered stable distribution could be a widely useful tool for modelling the high-frequency financial volatility in general contexts with a FIGARCH-type specification.

Suggested Citation

  • L. Feng & Y. Shi, 2017. "Fractionally integrated GARCH model with tempered stable distribution: a simulation study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(16), pages 2837-2857, December.
  • Handle: RePEc:taf:japsta:v:44:y:2017:i:16:p:2837-2857
    DOI: 10.1080/02664763.2016.1266310
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1266310
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1266310?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanlin Shi & Yang Yang, 2018. "Modeling High Frequency Data with Long Memory and Structural Change: A-HYEGARCH Model," Risks, MDPI, vol. 6(2), pages 1-28, March.
    2. Hong Li & Yanlin Shi, 2021. "Mortality Forecasting with an Age-Coherent Sparse VAR Model," Risks, MDPI, vol. 9(2), pages 1-19, February.
    3. Feng, Lingbing & Shi, Yanlin & Chang, Le, 2021. "Forecasting mortality with a hyperbolic spatial temporal VAR model," International Journal of Forecasting, Elsevier, vol. 37(1), pages 255-273.
    4. Samet Gunay & Audil Rashid Khaki, 2018. "Best Fitting Fat Tail Distribution for the Volatilities of Energy Futures: Gev, Gat and Stable Distributions in GARCH and APARCH Models," JRFM, MDPI, vol. 11(2), pages 1-19, June.
    5. Yanlin Shi, 2021. "Forecasting mortality rates with the adaptive spatial temporal autoregressive model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 528-546, April.
    6. Yanlin Shi, 2023. "Long memory and regime switching in the stochastic volatility modelling," Annals of Operations Research, Springer, vol. 320(2), pages 999-1020, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:44:y:2017:i:16:p:2837-2857. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.