IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v43y2016i8p1386-1399.html
   My bibliography  Save this article

On conditional risk estimation considering model risk

Author

Listed:
  • Fedya Telmoudi
  • Mohamed EL Ghourabi
  • Mohamed Limam

Abstract

Usually, parametric procedures used for conditional variance modelling are associated with model risk. Model risk may affect the volatility and conditional value at risk estimation process either due to estimation or misspecification risks. Hence, non-parametric artificial intelligence models can be considered as alternative models given that they do not rely on an explicit form of the volatility. In this paper, we consider the least-squares support vector regression (LS-SVR), weighted LS-SVR and Fixed size LS-SVR models in order to handle the problem of conditional risk estimation taking into account issues of model risk. A simulation study and a real application show the performance of proposed volatility and VaR models.

Suggested Citation

  • Fedya Telmoudi & Mohamed EL Ghourabi & Mohamed Limam, 2016. "On conditional risk estimation considering model risk," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(8), pages 1386-1399, June.
  • Handle: RePEc:taf:japsta:v:43:y:2016:i:8:p:1386-1399
    DOI: 10.1080/02664763.2015.1100595
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2015.1100595
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2015.1100595?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernanda Maria Müller & Marcelo Brutti Righi, 2024. "Comparison of Value at Risk (VaR) Multivariate Forecast Models," Computational Economics, Springer;Society for Computational Economics, vol. 63(1), pages 75-110, January.
    2. Fernanda Maria Müller & Marcelo Brutti Righi, 2018. "Numerical comparison of multivariate models to forecasting risk measures," Risk Management, Palgrave Macmillan, vol. 20(1), pages 29-50, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:43:y:2016:i:8:p:1386-1399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.