IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v43y2016i3p396-411.html
   My bibliography  Save this article

Robust Bayesian analysis of loss reserving data using scale mixtures distributions

Author

Listed:
  • S.T. Boris Choy
  • Jennifer S.K. Chan
  • Udi E. Makov

Abstract

It is vital for insurance companies to have appropriate levels of loss reserving to pay outstanding claims and related settlement costs. With many uncertainties and time lags inherently involved in the claims settlement process, loss reserving therefore must be based on estimates. Existing models and methods cannot cope with irregular and extreme claims and hence do not offer an accurate prediction of loss reserving. This paper extends the conventional normal error distribution in loss reserving modeling to a range of heavy-tailed distributions which are expressed by certain scale mixtures forms. This extension enables robust analysis and, in addition, allows an efficient implementation of Bayesian analysis via Markov chain Monte Carlo simulations. Various models for the mean of the sampling distributions, including the log-Analysis of Variance (ANOVA), log-Analysis of Covariance (ANCOVA) and state space models, are considered and the straightforward implementation of scale mixtures distributions is demonstrated using OpenBUGS.

Suggested Citation

  • S.T. Boris Choy & Jennifer S.K. Chan & Udi E. Makov, 2016. "Robust Bayesian analysis of loss reserving data using scale mixtures distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(3), pages 396-411, March.
  • Handle: RePEc:taf:japsta:v:43:y:2016:i:3:p:396-411
    DOI: 10.1080/02664763.2015.1063115
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2015.1063115
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2015.1063115?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:43:y:2016:i:3:p:396-411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.