IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v43y2016i15p2886-2896.html
   My bibliography  Save this article

Multiple imputation of a randomly censored covariate improves logistic regression analysis

Author

Listed:
  • Folefac D. Atem
  • Jing Qian
  • Jacqueline E. Maye
  • Keith A. Johnson
  • Rebecca A. Betensky

Abstract

Randomly censored covariates arise frequently in epidemiologic studies. The most commonly used methods, including complete case and single imputation or substitution, suffer from inefficiency and bias. They make strong parametric assumptions or they consider limit of detection censoring only. We employ multiple imputation, in conjunction with semi-parametric modeling of the censored covariate, to overcome these shortcomings and to facilitate robust estimation. We develop a multiple imputation approach for randomly censored covariates within the framework of a logistic regression model. We use the non-parametric estimate of the covariate distribution or the semi-parametric Cox model estimate in the presence of additional covariates in the model. We evaluate this procedure in simulations, and compare its operating characteristics to those from the complete case analysis and a survival regression approach. We apply the procedures to an Alzheimer's study of the association between amyloid positivity and maternal age of onset of dementia. Multiple imputation achieves lower standard errors and higher power than the complete case approach under heavy and moderate censoring and is comparable under light censoring. The survival regression approach achieves the highest power among all procedures, but does not produce interpretable estimates of association. Multiple imputation offers a favorable alternative to complete case analysis and ad hoc substitution methods in the presence of randomly censored covariates within the framework of logistic regression.

Suggested Citation

  • Folefac D. Atem & Jing Qian & Jacqueline E. Maye & Keith A. Johnson & Rebecca A. Betensky, 2016. "Multiple imputation of a randomly censored covariate improves logistic regression analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(15), pages 2886-2896, November.
  • Handle: RePEc:taf:japsta:v:43:y:2016:i:15:p:2886-2896
    DOI: 10.1080/02664763.2016.1155110
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1155110
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1155110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tsimikas, John V. & Bantis, Leonidas E. & Georgiou, Stelios D., 2012. "Inference in generalized linear regression models with a censored covariate," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1854-1868.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Folefac D Atem & Roland A Matsouaka, 2017. "Linear Regression Model with a Randomly Censored Predictor: Estimation Procedures," Biostatistics and Biometrics Open Access Journal, Juniper Publishers Inc., vol. 1(2), pages 21-32, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Qian & Sy Han Chiou & Jacqueline E. Maye & Folefac Atem & Keith A. Johnson & Rebecca A. Betensky, 2018. "Threshold regression to accommodate a censored covariate," Biometrics, The International Biometric Society, vol. 74(4), pages 1261-1270, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:43:y:2016:i:15:p:2886-2896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.