IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v42y2015i8p1813-1828.html
   My bibliography  Save this article

Spatial modeling of extreme rainfall in northeast Thailand

Author

Listed:
  • Sanghoo Yoon
  • Bungon Kumphon
  • Jeong-Soo Park

Abstract

It is well recognized that the generalized extreme value (GEV) distribution is widely used for any extreme events. This notion is based on the study of discrete choice behavior; however, there is a limit for predicting the distribution at ungauged sites. Hence, there have been studies on spatial dependence within extreme events in continuous space using recorded observations. We model the annual maximum daily rainfall data consisting of 25 locations for the period from 1982 to 2013. The spatial GEV model that is established under observations is assumed to be mutually independent because there is no spatial dependency between the stations. Furthermore, we divide the region into two regions for a better model fit and identify the best model for each region. We show that the regional spatial GEV model reflects the spatial pattern well compared with the spatial GEV model over the entire region as the local GEV distribution. The advantage of spatial extreme modeling is that more robust return levels and some indices of extreme rainfall can be obtained for observed stations as well as for locations without observed data. Thus, the model helps to determine the effects and assessment of vulnerability due to heavy rainfall in northeast Thailand.

Suggested Citation

  • Sanghoo Yoon & Bungon Kumphon & Jeong-Soo Park, 2015. "Spatial modeling of extreme rainfall in northeast Thailand," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(8), pages 1813-1828, August.
  • Handle: RePEc:taf:japsta:v:42:y:2015:i:8:p:1813-1828
    DOI: 10.1080/02664763.2015.1010492
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2015.1010492
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2015.1010492?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nurulkamal Masseran & Muhammad Aslam Mohd Safari, 2022. "Statistical Modeling on the Severity of Unhealthy Air Pollution Events in Malaysia," Mathematics, MDPI, vol. 10(16), pages 1-15, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:42:y:2015:i:8:p:1813-1828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.