Author
Listed:
- Hamid Shahriari
- Orod Ahmadi
Abstract
The first step in statistical analysis is the parameter estimation. In multivariate analysis, one of the parameters of interest to be estimated is the mean vector. In multivariate statistical analysis, it is usually assumed that the data come from a multivariate normal distribution. In this situation, the maximum likelihood estimator (MLE), that is, the sample mean vector, is the best estimator. However, when outliers exist in the data, the use of sample mean vector will result in poor estimation. So, other estimators which are robust to the existence of outliers should be used. The most popular robust multivariate estimator for estimating the mean vector is S-estimator with desirable properties. However, computing this estimator requires the use of a robust estimate of mean vector as a starting point. Usually minimum volume ellipsoid (MVE) is used as a starting point in computing S-estimator. For high-dimensional data computing, the MVE takes too much time. In some cases, this time is so large that the existing computers cannot perform the computation. In addition to the computation time, for high-dimensional data set the MVE method is not precise. In this paper, a robust starting point for S-estimator based on robust clustering is proposed which could be used for estimating the mean vector of the high-dimensional data. The performance of the proposed estimator in the presence of outliers is studied and the results indicate that the proposed estimator performs precisely and much better than some of the existing robust estimators for high-dimensional data.
Suggested Citation
Hamid Shahriari & Orod Ahmadi, 2015.
"Robust estimation of the mean vector for high-dimensional data set using robust clustering,"
Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(6), pages 1183-1205, June.
Handle:
RePEc:taf:japsta:v:42:y:2015:i:6:p:1183-1205
DOI: 10.1080/02664763.2014.999030
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:42:y:2015:i:6:p:1183-1205. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.