Author
Listed:
- Fernando A. Otero
- Helcio R. Barreto Orlande
- Gloria L. Frontini
- Guillermo E. Eli�abe
Abstract
In this article, static light scattering (SLS) measurements are processed to estimate the particle size distribution of particle systems incorporating prior information obtained from an alternative experimental technique: scanning electron microscopy (SEM). For this purpose we propose two Bayesian schemes (one parametric and another non-parametric) to solve the stated light scattering problem and take advantage of the obtained results to summarize some features of the Bayesian approach within the context of inverse problems. The features presented in this article include the improvement of the results when some useful prior information from an alternative experiment is considered instead of a non-informative prior as it occurs in a deterministic maximum likelihood estimation. This improvement will be shown in terms of accuracy and precision in the corresponding results and also in terms of minimizing the effect of multiple minima by including significant information in the optimization. Both Bayesian schemes are implemented using Markov Chain Monte Carlo methods. They have been developed on the basis of the Metropolis-Hastings (MH) algorithm using Matlab-super-® and are tested with the analysis of simulated and experimental examples of concentrated and semi-concentrated particles. In the simulated examples, SLS measurements were generated using a rigorous model, while the inversion stage was solved using an approximate model in both schemes and also using the rigorous model in the parametric scheme. Priors from SEM micrographs were also simulated and experimented, where the simulated ones were obtained using a Monte Carlo routine. In addition to the presentation of these features of the Bayesian approach, some other topics will be discussed, such as regularization and some implementation issues of the proposed schemes, among which we remark the selection of the parameters used in the MH algorithm.
Suggested Citation
Fernando A. Otero & Helcio R. Barreto Orlande & Gloria L. Frontini & Guillermo E. Eli�abe, 2015.
"Bayesian approach to the inverse problem in a light scattering application,"
Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 994-1016, May.
Handle:
RePEc:taf:japsta:v:42:y:2015:i:5:p:994-1016
DOI: 10.1080/02664763.2014.993370
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:42:y:2015:i:5:p:994-1016. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.