IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v42y2015i2p445-458.html
   My bibliography  Save this article

Model selection in quantile regression models

Author

Listed:
  • Rahim Alhamzawi

Abstract

Lasso methods are regularisation and shrinkage methods widely used for subset selection and estimation in regression problems. From a Bayesian perspective, the Lasso-type estimate can be viewed as a Bayesian posterior mode when specifying independent Laplace prior distributions for the coefficients of independent variables [32]. A scale mixture of normal priors can also provide an adaptive regularisation method and represents an alternative model to the Bayesian Lasso-type model. In this paper, we assign a normal prior with mean zero and unknown variance for each quantile coefficient of independent variable. Then, a simple Markov Chain Monte Carlo-based computation technique is developed for quantile regression (QReg) models, including continuous, binary and left-censored outcomes. Based on the proposed prior, we propose a criterion for model selection in QReg models. The proposed criterion can be applied to classical least-squares, classical QReg, classical Tobit QReg and many others. For example, the proposed criterion can be applied to rq() , lm() and crq() which is available in an R package called Brq. Through simulation studies and analysis of a prostate cancer data set, we assess the performance of the proposed methods. The simulation studies and the prostate cancer data set analysis confirm that our methods perform well, compared with other approaches.

Suggested Citation

  • Rahim Alhamzawi, 2015. "Model selection in quantile regression models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(2), pages 445-458, February.
  • Handle: RePEc:taf:japsta:v:42:y:2015:i:2:p:445-458
    DOI: 10.1080/02664763.2014.959905
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2014.959905
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2014.959905?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fadel Hamid Hadi Alhusseini & Taha al Shaybawee & Fedaa Abd Almajid Sabbar Alaraje, 2017. "Identify Relative importance of covariates in Bayesian lasso quantile regression via new algorithm in statistical program R," Romanian Statistical Review, Romanian Statistical Review, vol. 65(4), pages 99-110, December.
    2. Yuyan Wang & Akhgar Ghassabian & Bo Gu & Yelena Afanasyeva & Yiwei Li & Leonardo Trasande & Mengling Liu, 2023. "Semiparametric distributed lag quantile regression for modeling time‐dependent exposure mixtures," Biometrics, The International Biometric Society, vol. 79(3), pages 2619-2632, September.
    3. Qifa Xu & Chao Cai & Cuixia Jiang & Fang Sun & Xue Huang, 2020. "Block average quantile regression for massive dataset," Statistical Papers, Springer, vol. 61(1), pages 141-165, February.
    4. Rahim Alhamzawi, 2016. "Bayesian Analysis of Composite Quantile Regression," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 358-373, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:42:y:2015:i:2:p:445-458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.