IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v42y2015i1p114-126.html
   My bibliography  Save this article

A skew-normal random effects model for longitudinal ordinal categorical responses with missing data

Author

Listed:
  • Afsane Rastegaran
  • Mohammad Reza Zadkarami

Abstract

Missing values are common in longitudinal data studies. The missing data mechanism is termed non-ignorable (NI) if the probability of missingness depends on the non-response (missing) observations. This paper presents a model for the ordinal categorical longitudinal data with NI non-monotone missing values. We assumed two separate models for the response and missing procedure. The response is modeled as ordinal logistic, whereas the logistic binary model is considered for the missing process. We employ these models in the context of so-called shared-parameter models, where the outcome and missing data models are connected by a common set of random effects. It is commonly assumed that the random effect follows the normal distribution in longitudinal data with or without missing data. This can be extremely restrictive in practice, and it may result in misleading statistical inferences. In this paper, we instead adopt a more flexible alternative distribution which is called the skew-normal distribution. The methodology is illustrated through an application to Schizophrenia Collaborative Study data [19] and a simulation.

Suggested Citation

  • Afsane Rastegaran & Mohammad Reza Zadkarami, 2015. "A skew-normal random effects model for longitudinal ordinal categorical responses with missing data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(1), pages 114-126, January.
  • Handle: RePEc:taf:japsta:v:42:y:2015:i:1:p:114-126
    DOI: 10.1080/02664763.2014.938223
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2014.938223
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2014.938223?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lei Xu & Jun Shao, 2009. "Estimation in Longitudinal or Panel Data Models with Random-Effect-Based Missing Responses," Biometrics, The International Biometric Society, vol. 65(4), pages 1175-1183, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siamak Ghasemzadeh & Mojtaba Ganjali & Taban Baghfalaki, 2018. "Bayesian quantile regression for analyzing ordinal longitudinal responses in the presence of non-ignorable missingness," METRON, Springer;Sapienza Università di Roma, vol. 76(3), pages 321-348, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lyu Ni & Jun Shao, 2023. "Estimation with multivariate outcomes having nonignorable item nonresponse," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 1-15, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:42:y:2015:i:1:p:114-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.