IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v42y2015i12p2531-2538.html
   My bibliography  Save this article

Joint coverage probability in a simulation study on continuous-time Markov chain parameter estimation

Author

Listed:
  • Julia S. Benoit
  • Wenyaw Chan
  • Rachelle S. Doody

Abstract

Parameter dependency within data sets in simulation studies is common, especially in models such as continuous-time Markov chains (CTMCs). Additionally, the literature lacks a comprehensive examination of estimation performance for the likelihood-based general multi-state CTMC. Among studies attempting to assess the estimation, none have accounted for dependency among parameter estimates. The purpose of this research is twofold: (1) to develop a multivariate approach for assessing accuracy and precision for simulation studies (2) to add to the literature a comprehensive examination of the estimation of a general 3-state CTMC model. Simulation studies are conducted to analyze longitudinal data with a trinomial outcome using a CTMC with and without covariates. Measures of performance including bias, component-wise coverage probabilities, and joint coverage probabilities are calculated. An application is presented using Alzheimer's disease caregiver stress levels. Comparisons of joint and component-wise parameter estimates yield conflicting inferential results in simulations from models with and without covariates. In conclusion, caution should be taken when conducting simulation studies aiming to assess performance and choice of inference should properly reflect the purpose of the simulation.

Suggested Citation

  • Julia S. Benoit & Wenyaw Chan & Rachelle S. Doody, 2015. "Joint coverage probability in a simulation study on continuous-time Markov chain parameter estimation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(12), pages 2531-2538, December.
  • Handle: RePEc:taf:japsta:v:42:y:2015:i:12:p:2531-2538
    DOI: 10.1080/02664763.2015.1043865
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2015.1043865
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2015.1043865?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jingyuan Shen & Lirong Cui, 2017. "Reliability performance for dynamic multi-state repairable systems with regimes," IISE Transactions, Taylor & Francis Journals, vol. 49(9), pages 911-926, September.
    2. Pavithra, Celeste R. & Deepak, T.G., 2022. "Parameter estimation and computation of the Fisher information matrix for functions of phase type random variables," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    3. Shen, Jingyuan & Hu, Jiawen & Ma, Yizhong, 2020. "Two preventive replacement strategies for systems with protective auxiliary parts subject to degradation and economic dependence," Reliability Engineering and System Safety, Elsevier, vol. 204(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:42:y:2015:i:12:p:2531-2538. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.