IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v41y2014i3p582-595.html
   My bibliography  Save this article

Multivariate extreme value analysis and its relevance in a metallographical application

Author

Listed:
  • A.B. Schmiedt
  • H.H. Dickert
  • W. Bleck
  • U. Kamps

Abstract

Motivated from extreme value (EV) analysis for large non-metallic inclusions in engineering steels and a real data set, the benefit of choosing a multivariate EV approach is discussed. An extensive simulation study shows that the common univariate setup may lead to a high proportion of mis-specifications of the true EV distribution, as well as that the statistical analysis is considerably improved when being based on the respective data of r largest observations, with r appropriately chosen. Results for several underlying distributions and various values of r are presented along with effects on estimators for the parameters of the generalized EV family of distributions.

Suggested Citation

  • A.B. Schmiedt & H.H. Dickert & W. Bleck & U. Kamps, 2014. "Multivariate extreme value analysis and its relevance in a metallographical application," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(3), pages 582-595, March.
  • Handle: RePEc:taf:japsta:v:41:y:2014:i:3:p:582-595
    DOI: 10.1080/02664763.2013.845872
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2013.845872
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2013.845872?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rinya Takahashi & Masaaki Sibuya, 2002. "Metal fatigue, Wicksell transform and extreme values," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 18(3), pages 301-312, July.
    2. Michael E. Robinson & Jonathan A. Tawn, 1995. "Statistics for Exceptional Athletics Records," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 44(4), pages 499-511, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Einmahl, John H. J. & Magnus, Jan R., 2008. "Records in Athletics Through Extreme-Value Theory," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1382-1391.
    2. Francesco Pauli & Stuart Coles, 2001. "Penalized likelihood inference in extreme value analyses," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(5), pages 547-560.
    3. Wang, Bing Xing & Yu, Keming & Coolen, Frank P.A., 2015. "Interval estimation for proportional reversed hazard family based on lower record values," Statistics & Probability Letters, Elsevier, vol. 98(C), pages 115-122.
    4. Eric T. Bradlow & Young-Hoon Park, 2007. "Bayesian Estimation of Bid Sequences in Internet Auctions Using a Generalized Record-Breaking Model," Marketing Science, INFORMS, vol. 26(2), pages 218-229, 03-04.
    5. Harry Spearing & Jonathan Tawn & David Irons & Tim Paulden & Grace Bennett, 2021. "Ranking, and other properties, of elite swimmers using extreme value theory," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 368-395, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:41:y:2014:i:3:p:582-595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.