IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v41y2014i2p259-274.html
   My bibliography  Save this article

Comparing the mean vectors of two independent multivariate log-normal distributions

Author

Listed:
  • S.H. Lin

Abstract

The multivariate log-normal distribution is a good candidate to describe data that are not only positive and skewed, but also contain many characteristic values. In this study, we apply the generalized variable method to compare the mean vectors of two independent multivariate log-normal populations that display heteroscedasticity. Two generalized pivotal quantities are derived for constructing the generalized confidence region and for testing the difference between two mean vectors. Simulation results indicate that the proposed procedures exhibit satisfactory performance regardless of the sample sizes and heteroscedasticity. The type I error rates obtained are consistent with expectations and the coverage probabilities are close to the nominal level when compared with the other method which is currently available. These features make the proposed method a worthy alternative for inferential analysis of problems involving multivariate log-normal means. The results are illustrated using three examples.

Suggested Citation

  • S.H. Lin, 2014. "Comparing the mean vectors of two independent multivariate log-normal distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(2), pages 259-274, February.
  • Handle: RePEc:taf:japsta:v:41:y:2014:i:2:p:259-274
    DOI: 10.1080/02664763.2013.838669
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2013.838669
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2013.838669?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gamage, Jinadasa & Mathew, Thomas & Weerahandi, Samaradasa, 2004. "Generalized p-values and generalized confidence regions for the multivariate Behrens-Fisher problem and MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 88(1), pages 177-189, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. H. Lin & R. S. Wang, 2009. "Inferences on a linear combination of K multivariate normal mean vectors," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(4), pages 415-428.
    2. Xu, Li-Wen, 2015. "Parametric bootstrap approaches for two-way MANOVA with unequal cell sizes and unequal cell covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 291-303.
    3. Tang, Shijie & Tsui, Kam-Wah, 2007. "Distributional properties for the generalized p-value for the Behrens-Fisher problem," Statistics & Probability Letters, Elsevier, vol. 77(1), pages 1-8, January.
    4. Jin-Ting Zhang & Xuefeng Liu, 2013. "A modified Bartlett test for heteroscedastic one-way MANOVA," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(1), pages 135-152, January.
    5. Lai, Chin-Ying & Tian, Lili & Schisterman, Enrique F., 2012. "Exact confidence interval estimation for the Youden index and its corresponding optimal cut-point," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1103-1114.
    6. Rendao Ye & Tiefeng Ma & Songgui Wang, 2011. "Generalized confidence intervals for the process capability indices in general random effect model with balanced data," Statistical Papers, Springer, vol. 52(1), pages 153-169, February.
    7. Roy, Anindya & Bose, Arup, 2009. "Coverage of generalized confidence intervals," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1384-1397, August.
    8. Mar Fenoy & Pilar Ibarrola & Juan B. Seoane-Sepúlveda, 2019. "Generalized p value for multivariate Gaussian stochastic processes in continuous time," Statistical Papers, Springer, vol. 60(6), pages 2013-2030, December.
    9. Lajos Horváth & Gregory Rice, 2015. "Testing Equality Of Means When The Observations Are From Functional Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(1), pages 84-108, January.
    10. Xu, Li-Wen & Wang, Song-Gui, 2008. "A new generalized p-value for ANOVA under heteroscedasticity," Statistics & Probability Letters, Elsevier, vol. 78(8), pages 963-969, June.
    11. Bebu, Ionut & Luta, George & Mathew, Thomas & Kennedy, Paul A. & Agan, Brian K., 2016. "Parametric cost-effectiveness inference with skewed data," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 210-220.
    12. Girón, Fco. Javier & del Castillo, Carmen, 2010. "The multivariate Behrens-Fisher distribution," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 2091-2102, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:41:y:2014:i:2:p:259-274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.