IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v41y2014i12p2616-2626.html
   My bibliography  Save this article

The Gamma-count distribution in the analysis of experimental underdispersed data

Author

Listed:
  • Walmes Marques Zeviani
  • Paulo Justiniano Ribeiro
  • Wagner Hugo Bonat
  • Silvia Emiko Shimakura
  • Joel Augusto Muniz

Abstract

Event counts are response variables with non-negative integer values representing the number of times that an event occurs within a fixed domain such as a time interval, a geographical area or a cell of a contingency table. Analysis of counts by Gaussian regression models ignores the discreteness, asymmetry and heteroscedasticity and is inefficient, providing unrealistic standard errors or possibly negative predictions of the expected number of events. The Poisson regression is the standard model for count data with underlying assumptions on the generating process which may be implausible in many applications. Statisticians have long recognized the limitation of imposing equidispersion under the Poisson regression model. A typical situation is when the conditional variance exceeds the conditional mean, in which case models allowing for overdispersion are routinely used. Less reported is the case of underdispersion with fewer modeling alternatives and assessments available in the literature. One of such alternatives, the Gamma-count model, is adopted here in the analysis of an agronomic experiment designed to investigate the effect of levels of defoliation on different phenological states upon the number of cotton bolls. Data set and code for analysis are available as online supplements. Results show improvements over the Poisson model and the semi-parametric quasi-Poisson model in capturing the observed variability in the data. Estimating rather than assuming the underlying variance process leads to important insights into the process.

Suggested Citation

  • Walmes Marques Zeviani & Paulo Justiniano Ribeiro & Wagner Hugo Bonat & Silvia Emiko Shimakura & Joel Augusto Muniz, 2014. "The Gamma-count distribution in the analysis of experimental underdispersed data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(12), pages 2616-2626, December.
  • Handle: RePEc:taf:japsta:v:41:y:2014:i:12:p:2616-2626
    DOI: 10.1080/02664763.2014.922168
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2014.922168
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2014.922168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Célestin C. Kokonendji & Sobom M. Somé & Youssef Esstafa & Marcelo Bourguignon, 2023. "On Underdispersed Count Kernels for Smoothing Probability Mass Functions," Stats, MDPI, vol. 6(4), pages 1-15, November.
    2. Douglas Toledo & Cristiane Akemi Umetsu & Antonio Fernando Monteiro Camargo & Idemauro Antonio Rodrigues Lara, 2022. "Flexible models for non-equidispersed count data: comparative performance of parametric models to deal with underdispersion," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(3), pages 473-497, September.
    3. Chénangnon Frédéric Tovissodé & Sèwanou Hermann Honfo & Jonas Têlé Doumatè & Romain Glèlè Kakaï, 2021. "On the Discretization of Continuous Probability Distributions Using a Probabilistic Rounding Mechanism," Mathematics, MDPI, vol. 9(5), pages 1-17, March.
    4. Marcelo Bourguignon & Diego I. Gallardo & Rodrigo M. R. Medeiros, 2022. "A simple and useful regression model for underdispersed count data based on Bernoulli–Poisson convolution," Statistical Papers, Springer, vol. 63(3), pages 821-848, June.
    5. Adeniyi, Isaac Adeola, 2020. "Bayesian Generalized Linear Mixed Effects Models Using Normal-Independent Distributions: Formulation and Applications," MPRA Paper 99165, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:41:y:2014:i:12:p:2616-2626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.