IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v41y2014i11p2450-2461.html
   My bibliography  Save this article

Separability tests for high-dimensional, low-sample size multivariate repeated measures data

Author

Listed:
  • Sean L. Simpson
  • Lloyd J. Edwards
  • Martin A. Styner
  • Keith E. Muller

Abstract

Longitudinal imaging studies have moved to the forefront of medical research due to their ability to characterize spatio-temporal features of biological structures across the lifespan. Valid inference in longitudinal imaging requires enough flexibility of the covariance model to allow reasonable fidelity to the true pattern. On the other hand, the existence of computable estimates demands a parsimonious parameterization of the covariance structure. Separable (Kronecker product) covariance models provide one such parameterization in which the spatial and temporal covariances are modeled separately. However, evaluating the validity of this parameterization in high dimensions remains a challenge. Here we provide a scientifically informed approach to assessing the adequacy of separable (Kronecker product) covariance models when the number of observations is large relative to the number of independent sampling units (sample size). We address both the general case, in which unstructured matrices are considered for each covariance model, and the structured case, which assumes a particular structure for each model. For the structured case, we focus on the situation where the within-subject correlation is believed to decrease exponentially in time and space as is common in longitudinal imaging studies. However, the provided framework equally applies to all covariance patterns used within the more general multivariate repeated measures context. Our approach provides useful guidance for high dimension, low-sample size data that preclude using standard likelihood-based tests. Longitudinal medical imaging data of caudate morphology in schizophrenia illustrate the approaches appeal.

Suggested Citation

  • Sean L. Simpson & Lloyd J. Edwards & Martin A. Styner & Keith E. Muller, 2014. "Separability tests for high-dimensional, low-sample size multivariate repeated measures data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2450-2461, November.
  • Handle: RePEc:taf:japsta:v:41:y:2014:i:11:p:2450-2461
    DOI: 10.1080/02664763.2014.919251
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2014.919251
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2014.919251?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Filipiak, Katarzyna & Klein, Daniel & Roy, Anuradha, 2016. "Score test for a separable covariance structure with the first component as compound symmetric correlation matrix," Journal of Multivariate Analysis, Elsevier, vol. 150(C), pages 105-124.
    2. Katarzyna Filipiak & Daniel Klein & Anuradha Roy, 2015. "Score test for a separable covariance structure with the first component as compound symmetric correlation matrix," Working Papers 0148mss, College of Business, University of Texas at San Antonio.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:41:y:2014:i:11:p:2450-2461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.