IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v40y2013i4p777-794.html
   My bibliography  Save this article

Large-scale Bayesian spatial modelling of air pollution for policy support

Author

Listed:
  • Gavin Shaddick
  • Haojie Yan
  • Ruth Salway
  • Danielle Vienneau
  • Daphne Kounali
  • David Briggs

Abstract

The potential effects of air pollution are a major concern both in terms of the environment and in relation to human health. In order to support environmental policy, there is a need for accurate measurements of the concentrations of pollutants at high geographical resolution over large regions. However, within such regions, there are likely to be areas where the monitoring information will be sparse and so methods are required to accurately predict concentrations. Set within a Bayesian framework, models are developed which exploit the relationships between pollution and geographical covariate information, such as land use, climate and transport variables together with spatial structure. Candidate models are compared based on their ability to predict a set of validation sites. The chosen model is used to perform large-scale prediction of nitrogen dioxide at a 1×1 km resolution for the entire EU. The models allow probabilistic statements to be made with regard to the levels of air pollution that might be experienced in each area. When combined with population data, such information can be invaluable in informing policy by indicating areas for which improvements may be given priority.

Suggested Citation

  • Gavin Shaddick & Haojie Yan & Ruth Salway & Danielle Vienneau & Daphne Kounali & David Briggs, 2013. "Large-scale Bayesian spatial modelling of air pollution for policy support," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(4), pages 777-794.
  • Handle: RePEc:taf:japsta:v:40:y:2013:i:4:p:777-794
    DOI: 10.1080/02664763.2012.754851
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2012.754851
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2012.754851?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raquel Menezes & Helena Piairo & Pilar García-Soidán & Inês Sousa, 2016. "Spatial–temporal modellization of the $$\hbox {NO}_{2}$$ NO 2 concentration data through geostatistical tools," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 107-124, March.
    2. Raquel Menezes & Helena Piairo & Pilar García-Soidán & Inês Sousa, 2016. "Spatial–temporal modellization of the $$\hbox {NO}_{2}$$ NO 2 concentration data through geostatistical tools," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 107-124, March.
    3. Alessandro Fassò & Francesco Finazzi & Ferdinand Ndongo, 2016. "European Population Exposure to Airborne Pollutants Based on a Multivariate Spatio-Temporal Model," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 492-511, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:40:y:2013:i:4:p:777-794. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.