IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v40y2013i4p736-746.html
   My bibliography  Save this article

Construction of disease risk scoring systems using logistic group lasso: application to porcine reproductive and respiratory syndrome survey data

Author

Listed:
  • Hui Lin
  • Chong Wang
  • Peng Liu
  • Derald Holtkamp

Abstract

We propose to utilize the group lasso algorithm for logistic regression to construct a risk scoring system for predicting disease in swine. This work is motivated by the need to develop a risk scoring system from survey data on risk factor for porcine reproductive and respiratory syndrome (PRRS), which is a major health, production and financial problem for swine producers in nearly every country. Group lasso provides an attractive solution to this research question because of its ability to achieve group variable selection and stabilize parameter estimates at the same time. We propose to choose the penalty parameter for group lasso through leave-one-out cross-validation, using the criterion of the area under the receiver operating characteristic curve. Survey data for 896 swine breeding herd sites in the USA and Canada completed between March 2005 and March 2009 are used to construct the risk scoring system for predicting PRRS outbreaks in swine. We show that our scoring system for PRRS significantly improves the current scoring system that is based on an expert opinion. We also show that our proposed scoring system is superior in terms of area under the curve to that developed using multiple logistic regression model selected based on variable significance.

Suggested Citation

  • Hui Lin & Chong Wang & Peng Liu & Derald Holtkamp, 2013. "Construction of disease risk scoring systems using logistic group lasso: application to porcine reproductive and respiratory syndrome survey data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(4), pages 736-746.
  • Handle: RePEc:taf:japsta:v:40:y:2013:i:4:p:736-746
    DOI: 10.1080/02664763.2012.752449
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2012.752449
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2012.752449?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pei Wang & Shunjie Chen & Sijia Yang, 2022. "Recent Advances on Penalized Regression Models for Biological Data," Mathematics, MDPI, vol. 10(19), pages 1-24, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:40:y:2013:i:4:p:736-746. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.