IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v40y2013i11p2385-2406.html
   My bibliography  Save this article

Mobile safety cameras: estimating casualty reductions and the demand for secondary healthcare

Author

Listed:
  • Lee Fawcett
  • Neil Thorpe

Abstract

We consider a fully Bayesian analysis of road casualty data at 56 designated mobile safety camera sites in the Northumbria Police Force area in the UK. It is well documented that regression to the mean (RTM) can exaggerate the effectiveness of road safety measures and, since the 1980s, an empirical Bayes (EB) estimation framework has become the gold standard for separating real treatment effects from those of RTM. In this paper we suggest some diagnostics to check the assumptions underpinning the standard estimation framework. We also show that, relative to a fully Bayesian treatment, the EB method is over-optimistic when quantifying the variability of estimates of casualty frequency. Implementing a fully Bayesian analysis via Markov chain Monte Carlo also provides a more flexible and complete inferential procedure. We assess the sensitivity of estimates of treatment effectiveness, as well as the expected monetary value of prevention owing to the implementation of the safety cameras, to different model specifications, which include the estimation of trend and the construction of informative priors for some parameters.

Suggested Citation

  • Lee Fawcett & Neil Thorpe, 2013. "Mobile safety cameras: estimating casualty reductions and the demand for secondary healthcare," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(11), pages 2385-2406, November.
  • Handle: RePEc:taf:japsta:v:40:y:2013:i:11:p:2385-2406
    DOI: 10.1080/02664763.2013.817547
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2013.817547
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2013.817547?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Can Chen & Tienan Li & Jian Sun & Feng Chen, 2016. "Hotspot Identification for Shanghai Expressways Using the Quantitative Risk Assessment Method," IJERPH, MDPI, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:40:y:2013:i:11:p:2385-2406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.