IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v39y2012i7p1409-1421.html
   My bibliography  Save this article

Flexible parametric modelling of the hazard function in breast cancer studies

Author

Listed:
  • I. Ardoino
  • E. M. Biganzoli
  • C. Bajdik
  • P. J. Lisboa
  • P. Boracchi
  • F. Ambrogi

Abstract

In cancer research, study of the hazard function provides useful insights into disease dynamics, as it describes the way in which the (conditional) probability of death changes with time. The widely utilized Cox proportional hazard model uses a stepwise nonparametric estimator for the baseline hazard function, and therefore has a limited utility. The use of parametric models and/or other approaches that enables direct estimation of the hazard function is often invoked. A recent work by Cox et al . [6] has stimulated the use of the flexible parametric model based on the Generalized Gamma (GG) distribution, supported by the development of optimization software. The GG distribution allows estimation of different hazard shapes in a single framework. We use the GG model to investigate the shape of the hazard function in early breast cancer patients. The flexible approach based on a piecewise exponential model and the nonparametric additive hazards model are also considered.

Suggested Citation

  • I. Ardoino & E. M. Biganzoli & C. Bajdik & P. J. Lisboa & P. Boracchi & F. Ambrogi, 2012. "Flexible parametric modelling of the hazard function in breast cancer studies," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(7), pages 1409-1421, December.
  • Handle: RePEc:taf:japsta:v:39:y:2012:i:7:p:1409-1421
    DOI: 10.1080/02664763.2011.650685
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2011.650685
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2011.650685?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boracchi, Patrizia & Biganzoli, Elia & Marubini, Ettore, 2003. "Joint modelling of cause-specific hazard functions with cubic splines: an application to a large series of breast cancer patients," Computational Statistics & Data Analysis, Elsevier, vol. 42(1-2), pages 243-262, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ambrogi, Federico & Biganzoli, Elia & Boracchi, Patrizia, 2009. "Estimating crude cumulative incidences through multinomial logit regression on discrete cause-specific hazards," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2767-2779, May.
    2. Paola M. V. Rancoita & Morten Valberg & Romano Demicheli & Elia Biganzoli & Clelia Di Serio, 2017. "Tumor dormancy and frailty models: A novel approach," Biometrics, The International Biometric Society, vol. 73(1), pages 260-270, March.
    3. Jochen Ranger & Jörg-Tobias Kuhn, 2015. "Modeling Information Accumulation in Psychological Tests Using Item Response Times," Journal of Educational and Behavioral Statistics, , vol. 40(3), pages 274-306, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:39:y:2012:i:7:p:1409-1421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.