IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v39y2012i11p2363-2377.html
   My bibliography  Save this article

Dirichlet process mixture models for unsupervised clustering of symptoms in Parkinson's disease

Author

Listed:
  • Nicole White
  • Helen Johnson
  • Peter Silburn
  • Kerrie Mengersen

Abstract

In this paper, the goal of identifying disease subgroups based on differences in observed symptom profile is considered. Commonly referred to as phenotype identification, solutions to this task often involve the application of unsupervised clustering techniques. In this paper, we investigate the application of a Dirichlet process mixture model for this task. This model is defined by the placement of the Dirichlet process on the unknown components of a mixture model, allowing for the expression of uncertainty about the partitioning of observed data into homogeneous subgroups. To exemplify this approach, an application to phenotype identification in Parkinson's disease is considered, with symptom profiles collected using the Unified Parkinson's Disease Rating Scale.

Suggested Citation

  • Nicole White & Helen Johnson & Peter Silburn & Kerrie Mengersen, 2012. "Dirichlet process mixture models for unsupervised clustering of symptoms in Parkinson's disease," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(11), pages 2363-2377, July.
  • Handle: RePEc:taf:japsta:v:39:y:2012:i:11:p:2363-2377
    DOI: 10.1080/02664763.2012.710897
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2012.710897
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2012.710897?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonardo Grilli & Carla Rampichini, 2015. "Specification of random effects in multilevel models: a review," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 967-976, May.
    2. Patricia Gilholm & Kerrie Mengersen & Helen Thompson, 2020. "Identifying latent subgroups of children with developmental delay using Bayesian sequential updating and Dirichlet process mixture modelling," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-17, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:39:y:2012:i:11:p:2363-2377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.