IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v38y2011i9p1751-1768.html
   My bibliography  Save this article

Nonparametric test for the homogeneity of the overall variability

Author

Listed:
  • Ashis SenGupta
  • Hon Keung Tony Ng

Abstract

In this paper, we propose a nonparametric test for homogeneity of overall variabilities for two multi-dimensional populations. Comparisons between the proposed nonparametric procedure and the asymptotic parametric procedure and a permutation test based on standardized generalized variances are made when the underlying populations are multivariate normal. We also study the performance of these test procedures when the underlying populations are non-normal. We observe that the nonparametric procedure and the permutation test based on standardized generalized variances are not as powerful as the asymptotic parametric test under normality. However, they are reliable and powerful tests for comparing overall variability under other multivariate distributions such as the multivariate Cauchy, the multivariate Pareto and the multivariate exponential distributions, even with small sample sizes. A Monte Carlo simulation study is used to evaluate the performance of the proposed procedures. An example from an educational study is used to illustrate the proposed nonparametric test.

Suggested Citation

  • Ashis SenGupta & Hon Keung Tony Ng, 2011. "Nonparametric test for the homogeneity of the overall variability," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(9), pages 1751-1768, September.
  • Handle: RePEc:taf:japsta:v:38:y:2011:i:9:p:1751-1768
    DOI: 10.1080/02664763.2010.529876
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2010.529876
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2010.529876?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Carlos Garcia-Diaz, 2007. "The 'effective variance' control chart for monitoring the dispersion process with missing data," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 1(1), pages 40-55.
    2. Bhandary, Madhusudan, 1996. "Test for generalized variance in signal processing," Statistics & Probability Letters, Elsevier, vol. 27(2), pages 155-162, April.
    3. SenGupta, Ashis, 1987. "Tests for standardized generalized variances of multivariate normal populations of possibly different dimensions," Journal of Multivariate Analysis, Elsevier, vol. 23(2), pages 209-219, December.
    4. Isabel Parra-Frutos, 2009. "The behaviour of the modified Levene’s test when data are not normally distributed," Computational Statistics, Springer, vol. 24(4), pages 671-693, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dariush Najarzadeh, 2019. "Testing equality of standardized generalized variances of k multivariate normal populations with arbitrary dimensions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(4), pages 593-623, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dariush Najarzadeh, 2019. "Testing equality of standardized generalized variances of k multivariate normal populations with arbitrary dimensions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(4), pages 593-623, December.
    2. Philip Pallmann & Ludwig Hothorn & Gemechis Djira, 2014. "A Levene-type test of homogeneity of variances against ordered alternatives," Computational Statistics, Springer, vol. 29(6), pages 1593-1608, December.
    3. Pronzato, Luc & Wynn, Henry P. & Zhigljavsky, Anatoly A., 2018. "Simplicial variances, potentials and Mahalanobis distances," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 276-289.
    4. Bhandary, Madhusudan, 1996. "Test for generalized variance in signal processing," Statistics & Probability Letters, Elsevier, vol. 27(2), pages 155-162, April.
    5. Grace Weishi Gu & Zachary R. Stangebye, 2023. "Costly Information And Sovereign Risk," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(4), pages 1397-1429, November.
    6. Cooray, Arusha & Paradiso, Antonio & Truglia, Francesco Giovanni, 2013. "Do countries belonging to the same region suggest the same growth enhancing variables? Evidence from selected South Asian countries," Economic Modelling, Elsevier, vol. 33(C), pages 772-779.
    7. Ali Jafari, 2012. "Inferences on the ratio of two generalized variances: independent and correlated cases," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(3), pages 297-314, August.
    8. I. Parra-Frutos, 2013. "Testing homogeneity of variances with unequal sample sizes," Computational Statistics, Springer, vol. 28(3), pages 1269-1297, June.
    9. Iliopoulos, George, 2008. "UMVU estimation of the ratio of powers of normal generalized variances under correlation," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1051-1069, July.
    10. Iliopoulos, George & Kourouklis, Stavros, 1999. "Improving on the Best Affine Equivariant Estimator of the Ratio of Generalized Variances," Journal of Multivariate Analysis, Elsevier, vol. 68(2), pages 176-192, February.
    11. Ahmad, Shabbir & Riaz, Muhammad & Abbasi, Saddam Akber & Lin, Zhengyan, 2013. "On monitoring process variability under double sampling scheme," International Journal of Production Economics, Elsevier, vol. 142(2), pages 388-400.
    12. I. Parra-Frutos, 2016. "Preliminary tests when comparing means," Computational Statistics, Springer, vol. 31(4), pages 1607-1631, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:38:y:2011:i:9:p:1751-1768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.