IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v37y2010i8p1283-1297.html
   My bibliography  Save this article

Monitoring imprecise fraction of nonconforming items using p control charts

Author

Listed:
  • Ming-Hung Shu
  • Hsien-Chung Wu

Abstract

The quality characteristics, which are known as attributes, cannot be conveniently and numerically represented. Generally, the attribute data can be regarded as the fuzzy data, which are ubiquitous in the manufacturing process and cannot be measured precisely and often be collected by visual inspection. In this paper, we construct a p control chart for monitoring the fraction of nonconforming items in the process in which fuzzy sample data are collected from the manufacturing process. The resolution identity - a well-known theorem in the fuzzy set theory - is invoked to construct the control limits of fuzzy-p control charts using fuzzy data. In order to determine whether the plotted imprecise fraction of nonconforming items is within the fuzzy lower and upper control limits, we also propose a ranking method for a set of fuzzy numbers. Using the fuzzy-p control charts and the proposed acceptability function to classify the manufacturing process allows the decision-maker to make linguistic decisions such as rather in control or rather out of control. A practical example is provided to describe the applicability of the fuzzy set theory to a conventional p control chart.

Suggested Citation

  • Ming-Hung Shu & Hsien-Chung Wu, 2010. "Monitoring imprecise fraction of nonconforming items using p control charts," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1283-1297.
  • Handle: RePEc:taf:japsta:v:37:y:2010:i:8:p:1283-1297
    DOI: 10.1080/02664760903030205
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760903030205
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760903030205?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Su-Fen Yang & Li-Pang Chen & Cheng-Kuan Lin, 2023. "Adjustment of Measurement Error Effects on Dispersion Control Chart with Distribution-Free Quality Variable," Sustainability, MDPI, vol. 15(5), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:37:y:2010:i:8:p:1283-1297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.