IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v37y2010i1p1-11.html
   My bibliography  Save this article

Analyzing survival data with highly negatively skewed distribution: The Gompertz-sinh family

Author

Listed:
  • Kahadawala Cooray
  • Malwane Ananda

Abstract

In this article, we explore a new two-parameter family of distribution, which is derived by suitably replacing the exponential term in the Gompertz distribution with a hyperbolic sine term. The resulting new family of distribution is referred to as the Gompertz-sinh distribution, and it possesses a thicker and longer lower tail than the Gompertz family, which is often used to model highly negatively skewed data. Moreover, we introduce a useful generalization of this model by adding a second shape parameter to accommodate a variety of density shapes as well as nondecreasing hazard shapes. The flexibility and better fitness of the new family, as well as its generalization, is demonstrated by providing well-known examples that involve complete, group, and censored data.

Suggested Citation

  • Kahadawala Cooray & Malwane Ananda, 2010. "Analyzing survival data with highly negatively skewed distribution: The Gompertz-sinh family," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(1), pages 1-11.
  • Handle: RePEc:taf:japsta:v:37:y:2010:i:1:p:1-11
    DOI: 10.1080/02664760802663072
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760802663072
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760802663072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanku Dey & Emrah Altun & Devendra Kumar & Indranil Ghosh, 2023. "The Reflected-Shifted-Truncated Lomax Distribution: Associated Inference with Applications," Annals of Data Science, Springer, vol. 10(3), pages 805-828, June.
    2. Jiang, R., 2010. "Discrete competing risk model with application to modeling bus-motor failure data," Reliability Engineering and System Safety, Elsevier, vol. 95(9), pages 981-988.
    3. Dey Sanku & Waymyers Sophia & Kumar Devendra, 2020. "The Reflected-Shifted-Truncated Lindley Distribution with Applications," Stochastics and Quality Control, De Gruyter, vol. 35(2), pages 67-77, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:37:y:2010:i:1:p:1-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.