IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v35y2008i6p681-691.html
   My bibliography  Save this article

Analysis of growth curve data by using cubic smoothing splines

Author

Listed:
  • Tapio Nummi
  • Laura Koskela

Abstract

Longitudinal data frequently arises in various fields of applied sciences where individuals are measured according to some ordered variable, e.g. time. A common approach used to model such data is based on the mixed models for repeated measures. This model provides an eminently flexible approach to modeling of a wide range of mean and covariance structures. However, such models are forced into a rigidly defined class of mathematical formulas which may not be well supported by the data within the whole sequence of observations. A possible non-parametric alternative is a cubic smoothing spline, which is highly flexible and has useful smoothing properties. It can be shown that under normality assumption, the solution of the penalized log-likelihood equation is the cubic smoothing spline, and this solution can be further expressed as a solution of the linear mixed model. It is shown here how cubic smoothing splines can be easily used in the analysis of complete and balanced data. Analysis can be greatly simplified by using the unweighted estimator studied in the paper. It is shown that if the covariance structure of random errors belong to certain class of matrices, the unweighted estimator is the solution to the penalized log-likelihood function. This result is new in smoothing spline context and it is not only confined to growth curve settings. The connection to mixed models is used in developing a rough testing of group profiles. Numerical examples are presented to illustrate the techniques proposed.

Suggested Citation

  • Tapio Nummi & Laura Koskela, 2008. "Analysis of growth curve data by using cubic smoothing splines," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(6), pages 681-691.
  • Handle: RePEc:taf:japsta:v:35:y:2008:i:6:p:681-691
    DOI: 10.1080/02664760801923964
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664760801923964
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760801923964?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tong, Xiaojun & He, Zhuoqiong Chong & Sun, Dongchu, 2018. "Estimating Chinese Treasury yield curves with Bayesian smoothing splines," Econometrics and Statistics, Elsevier, vol. 8(C), pages 94-124.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:35:y:2008:i:6:p:681-691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.