IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v35y2008i3p307-320.html
   My bibliography  Save this article

Computation aspects of the parameter estimates of linear mixed effects model in multivariate repeated measures set-up

Author

Listed:
  • Anuradha Roy

Abstract

The number of parameters mushrooms in a linear mixed effects (LME) model in the case of multivariate repeated measures data. Computation of these parameters is a real problem with the increase in the number of response variables or with the increase in the number of time points. The problem becomes more intricate and involved with the addition of additional random effects. A multivariate analysis is not possible in a small sample setting. We propose a method to estimate these many parameters in bits and pieces from baby models, by taking a subset of response variables at a time, and finally using these bits and pieces at the end to get the parameter estimates for the mother model, with all variables taken together. Applying this method one can calculate the fixed effects, the best linear unbiased predictions (BLUPs) for the random effects in the model, and also the BLUPs at each time of observation for each response variable, to monitor the effectiveness of the treatment for each subject. The proposed method is illustrated with an example of multiple response variables measured over multiple time points arising from a clinical trial in osteoporosis.

Suggested Citation

  • Anuradha Roy, 2008. "Computation aspects of the parameter estimates of linear mixed effects model in multivariate repeated measures set-up," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(3), pages 307-320.
  • Handle: RePEc:taf:japsta:v:35:y:2008:i:3:p:307-320
    DOI: 10.1080/02664760701833271
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760701833271
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760701833271?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stephen Haslett & Simo Puntanen, 2011. "On the equality of the BLUPs under two linear mixed models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(3), pages 381-395, November.
    2. Viroli, Cinzia, 2012. "On matrix-variate regression analysis," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 296-309.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:35:y:2008:i:3:p:307-320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.