IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v35y2008i3p245-261.html
   My bibliography  Save this article

Use of asymmetric loss functions in sequential estimation problems for multiple linear regression

Author

Listed:
  • Raghu Nandan Sengupta

Abstract

When estimating in a practical situation, asymmetric loss functions are preferred over squared error loss functions, as the former is more appropriate than the latter in many estimation problems. We consider here the problem of fixed precision point estimation of a linear parametric function in beta for the multiple linear regression model using asymmetric loss functions. Due to the presence of nuissance parameters, the sample size for the estimation problem is not known beforehand and hence we take the recourse of adaptive multistage sampling methodologies. We discuss here some multistage sampling techniques and compare the performances of these methodologies using simulation runs. The implementation of the codes for our proposed models is accomplished utilizing MATLAB 7.0.1 program run on a Pentium IV machine. Finally, we highlight the significance of such asymmetric loss functions with few practical examples.

Suggested Citation

  • Raghu Nandan Sengupta, 2008. "Use of asymmetric loss functions in sequential estimation problems for multiple linear regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(3), pages 245-261.
  • Handle: RePEc:taf:japsta:v:35:y:2008:i:3:p:245-261
    DOI: 10.1080/02664760701833388
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760701833388
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760701833388?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sengupta, Raghu Nandan & Sengupta, Angana, 2011. "Some variants of adaptive sampling procedures and their applications," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3183-3196, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:35:y:2008:i:3:p:245-261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.