IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v35y2008i1p49-65.html
   My bibliography  Save this article

Bayesian validation assessment of multivariate computational models

Author

Listed:
  • Xiaomo Jiang
  • Sankaran Mahadevan

Abstract

Multivariate model validation is a complex decision-making problem involving comparison of multiple correlated quantities, based upon the available information and prior knowledge. This paper presents a Bayesian risk-based decision method for validation assessment of multivariate predictive models under uncertainty. A generalized likelihood ratio is derived as a quantitative validation metric based on Bayes' theorem and Gaussian distribution assumption of errors between validation data and model prediction. The multivariate model is then assessed based on the comparison of the likelihood ratio with a Bayesian decision threshold, a function of the decision costs and prior of each hypothesis. The probability density function of the likelihood ratio is constructed using the statistics of multiple response quantities and Monte Carlo simulation. The proposed methodology is implemented in the validation of a transient heat conduction model, using a multivariate data set from experiments. The Bayesian methodology provides a quantitative approach to facilitate rational decisions in multivariate model assessment under uncertainty.

Suggested Citation

  • Xiaomo Jiang & Sankaran Mahadevan, 2008. "Bayesian validation assessment of multivariate computational models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(1), pages 49-65.
  • Handle: RePEc:taf:japsta:v:35:y:2008:i:1:p:49-65
    DOI: 10.1080/02664760701683577
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760701683577
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760701683577?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Luyi & Lu, Zhenzhou, 2018. "A new method for model validation with multivariate output," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 579-592.
    2. Teferra, Kirubel & Shields, Michael D. & Hapij, Adam & Daddazio, Raymond P., 2014. "Mapping model validation metrics to subject matter expert scores for model adequacy assessment," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 9-19.
    3. Jiang, Xiaomo & Mahadevan, Sankaran, 2009. "Bayesian structural equation modeling method for hierarchical model validation," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 796-809.
    4. Li, Wei & Chen, Wei & Jiang, Zhen & Lu, Zhenzhou & Liu, Yu, 2014. "New validation metrics for models with multiple correlated responses," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 1-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:35:y:2008:i:1:p:49-65. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.