IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v34y2007i10p1165-1183.html
   My bibliography  Save this article

Influential Observations in the Functional Measurement Error Model

Author

Listed:
  • Ignacio Vidal
  • Pilar Iglesias
  • Manuel Galea

Abstract

In this work we propose Bayesian measures to quantify the influence of observations on the structural parameters of the simple measurement error model (MEM). Different influence measures, like those based on q-divergence between posterior distributions and Bayes risk, are studied to evaluate the influence. A strategy based on the perturbation function and MCMC samples is used to compute these measures. The samples from the posterior distributions are obtained by using the Metropolis-Hastings algorithm and assuming specific proper prior distributions. The results are illustrated with an application to a real example modeled with MEM in the literature.

Suggested Citation

  • Ignacio Vidal & Pilar Iglesias & Manuel Galea, 2007. "Influential Observations in the Functional Measurement Error Model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(10), pages 1165-1183.
  • Handle: RePEc:taf:japsta:v:34:y:2007:i:10:p:1165-1183
    DOI: 10.1080/02664760701592703
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760701592703
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760701592703?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Casanova, María P. & Iglesias, Pilar & Bolfarine, Heleno & Salinas, Victor H. & Peña, Alexis, 2010. "Semiparametric Bayesian measurement error modeling," Journal of Multivariate Analysis, Elsevier, vol. 101(3), pages 512-524, March.
    2. Vidal, Ignacio & Iglesias, Pilar, 2008. "Comparison between a measurement error model and a linear model without measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 92-102, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:34:y:2007:i:10:p:1165-1183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.