IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v33y2006i6p609-622.html
   My bibliography  Save this article

Image segmentation using voronoi polygons and MCMC, with application to muscle fibre images

Author

Listed:
  • Ian Dryden
  • Rahman Farnoosh
  • Charles Taylor

Abstract

We investigate a Bayesian method for the segmentation of muscle fibre images. The images are reasonably well approximated by a Dirichlet tessellation, and so we use a deformable template model based on Voronoi polygons to represent the segmented image. We consider various prior distributions for the parameters and suggest an appropriate likelihood. Following the Bayesian paradigm, the mathematical form for the posterior distribution is obtained (up to an integrating constant). We introduce a Metropolis-Hastings algorithm and a reversible jump Markov chain Monte Carlo algorithm (RJMCMC) for simulation from the posterior when the number of polygons is fixed or unknown. The particular moves in the RJMCMC algorithm are birth, death and position/colour changes of the point process which determines the location of the polygons. Segmentation of the true image was carried out using the estimated posterior mode and posterior mean. A simulation study is presented which is helpful for tuning the hyperparameters and to assess the accuracy. The algorithms work well on a real image of a muscle fibre cross-section image, and an additional parameter, which models the boundaries of the muscle fibres, is included in the final model.

Suggested Citation

  • Ian Dryden & Rahman Farnoosh & Charles Taylor, 2006. "Image segmentation using voronoi polygons and MCMC, with application to muscle fibre images," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(6), pages 609-622.
  • Handle: RePEc:taf:japsta:v:33:y:2006:i:6:p:609-622
    DOI: 10.1080/02664760600679825
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760600679825
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760600679825?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. G. T. Denison & C. C. Holmes, 2001. "Bayesian Partitioning for Estimating Disease Risk," Biometrics, The International Biometric Society, vol. 57(1), pages 143-149, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. K C Flórez & A Corberán-Vallet & A Iftimi & J D Bermúdez, 2020. "A Bayesian unified framework for risk estimation and cluster identification in small area health data analysis," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-17, May.
    2. Goepp, Vivien & van de Kassteele, Jan, 2024. "Graph-based spatial segmentation of areal data," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    3. Deborah A. Costain, 2009. "Bayesian Partitioning for Modeling and Mapping Spatial Case–Control Data," Biometrics, The International Biometric Society, vol. 65(4), pages 1123-1132, December.
    4. Minge Xie & Qiankun Sun & Joseph Naus, 2009. "A Latent Model to Detect Multiple Clusters of Varying Sizes," Biometrics, The International Biometric Society, vol. 65(4), pages 1011-1020, December.
    5. Francisco Louzada & M�rio de Castro & Vera Tomazella & Jhon F.B. Gonzales, 2014. "Modeling categorical covariates for lifetime data in the presence of cure fraction by Bayesian partition structures," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(3), pages 622-634, March.
    6. Leonhard Knorr-Held & Günter Raßer & Nikolaus Becker, 2002. "Disease Mapping of Stage-Specific Cancer Incidence Data," Biometrics, The International Biometric Society, vol. 58(3), pages 492-501, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:33:y:2006:i:6:p:609-622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.