IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v31y2004i4p379-395.html
   My bibliography  Save this article

Testing for Multivariate Autocorrelation

Author

Listed:
  • H. E. T. Holgersson

Abstract

This paper concerns the problem of assessing autocorrelation of multivariate (i.e. systemwise) models. It is well known that systemwise diagnostic tests for autocorrelation often suffers from poor small sample properties in the sense that the true size overstates the nominal size. The failure of keeping control of the size usually stems from the fact that the critical values (used to decide the rejection area) originate from the slowly converging asymptotic null distribution. Another drawback of existing tests is that the power may be rather low if the deviation from the null is not symmetrical over the marginal models. In this paper we consider four quite different test techniques for autocorrelation. These are (i) Pillai's trace, (ii) Roy's largest root, (iii) the maximum F-statistic and (iv) the maximum t2 test. We show how to obtain control of the size of the tests, and then examine the true (small sample) size and power properties by means of Monte Carlo simulations.

Suggested Citation

  • H. E. T. Holgersson, 2004. "Testing for Multivariate Autocorrelation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(4), pages 379-395.
  • Handle: RePEc:taf:japsta:v:31:y:2004:i:4:p:379-395
    DOI: 10.1080/02664760410001681693
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760410001681693
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760410001681693?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andersson, Eva, 2007. "Effect of dependency in systems for multivariate surveillance," Research Reports 2007:1, University of Gothenburg, Statistical Research Unit, School of Business, Economics and Law.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:31:y:2004:i:4:p:379-395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.