IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v30y2003i2p145-161.html
   My bibliography  Save this article

Semiparametric Bayesian Techniques for Problems in Circular Data

Author

Listed:
  • Kaushik Ghosh
  • Rao Jammalamadaka
  • Ram Tiwari

Abstract

In this paper, we consider the problems of prediction and tests of hypotheses for directional data in a semiparametric Bayesian set-up. Observations are assumed to be independently drawn from the von Mises distribution and uncertainty in the location parameter is modelled by a Dirichlet process. For the prediction problem, we present a method to obtain the predictive density of a future observation, and, for the testing problem, we present a method of computing the Bayes factor by obtaining the posterior probabilities of the hypotheses under consideration. The semiparametric model is seen to be flexible and robust against prior misspecifications. While analytical expressions are intractable, the methods are easily implemented using the Gibbs sampler. We illustrate the methods with data from two real-life examples.

Suggested Citation

  • Kaushik Ghosh & Rao Jammalamadaka & Ram Tiwari, 2003. "Semiparametric Bayesian Techniques for Problems in Circular Data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(2), pages 145-161.
  • Handle: RePEc:taf:japsta:v:30:y:2003:i:2:p:145-161
    DOI: 10.1080/0266476022000023712
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/0266476022000023712
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0266476022000023712?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodríguez, Carlos E. & Núñez-Antonio, Gabriel & Escarela, Gabriel, 2020. "A Bayesian mixture model for clustering circular data," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
    2. McVinish, R. & Mengersen, K., 2008. "Semiparametric Bayesian circular statistics," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4722-4730, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:30:y:2003:i:2:p:145-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.