IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v28y2001i3-4p441-455.html
   My bibliography  Save this article

Applying designed experiments to optimize the performance of genetic algorithms used for scheduling complex products in the capital goods industry

Author

Listed:
  • P. Pongcharoen
  • D. J. Stewardson
  • C. Hicks
  • P. M. Braiden

Abstract

Conventional optimization approaches, such as Linear Programming, Dynamic Programming and Branch-and-Bound methods are well established for solving relatively simple scheduling problems. Algorithms such as Simulated Annealing, Taboo Search and Genetic Algorithms (GA) have recently been applied to large combinatorial problems. Owing to the complex nature of these problems it is often impossible to search the whole problem space and an optimal solution cannot, therefore, be guaranteed. A BiCriteria Genetic Algorithm (BCGA) has been developed for the scheduling of complex products with multiple resource constraints and deep product structure. This GA identifies and corrects infeasible schedules and takes account of the early supply of components and assemblies, late delivery of final products and capacity utilization. The research has used manufacturing data obtained from a capital goods company. Genetic Algorithms include a number of parameters, including the probabilities of crossover and mutation, the population size and the number of generations. The BCGA scheduling tool provides 16 alternative crossover operations and eight different mutation mechanisms. The overall objective of this study was to develop an efficient design-of-experiments approach to identify genetic algorithm operators and parameters that produce solutions with minimum total cost. The case studies were based upon a complex, computationally intensive scheduling problem that was insoluble using conventional approaches. This paper describes an efficient sequential experimental strategy that enabled this work to be performed within a reasonable time. The first stage was a screening experiment, which had a fractional factorial embedded within a half Latin-square design. The second stage was a half-fraction design with a reduced number of GA operators. The results are compared with previous studies. It is demonstrated that, in this case, improved GA performance was achieved using the experimental strategy proposed. The appropriate genetic operators and parameters may be case specific, leading to the view that experimental design may be the best way to proceed when finding the 'best' combination of GA operators and parameters.

Suggested Citation

  • P. Pongcharoen & D. J. Stewardson & C. Hicks & P. M. Braiden, 2001. "Applying designed experiments to optimize the performance of genetic algorithms used for scheduling complex products in the capital goods industry," Journal of Applied Statistics, Taylor & Francis Journals, vol. 28(3-4), pages 441-455.
  • Handle: RePEc:taf:japsta:v:28:y:2001:i:3-4:p:441-455
    DOI: 10.1080/02664760120034162
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760120034162
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760120034162?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thapatsuwan, Peeraya & Pongcharoen, Pupong & Hicks, Chris & Chainate, Warattapop, 2012. "Development of a stochastic optimisation tool for solving the multiple container packing problems," International Journal of Production Economics, Elsevier, vol. 140(2), pages 737-748.
    2. Pongcharoen, P. & Promtet, W. & Yenradee, P. & Hicks, C., 2008. "Stochastic Optimisation Timetabling Tool for university course scheduling," International Journal of Production Economics, Elsevier, vol. 112(2), pages 903-918, April.
    3. Hicks, Christian, 2006. "A Genetic Algorithm tool for optimising cellular or functional layouts in the capital goods industry," International Journal of Production Economics, Elsevier, vol. 104(2), pages 598-614, December.
    4. Yang, Taho & Kuo, Yiyo & Cho, Chiwoon, 2007. "A genetic algorithms simulation approach for the multi-attribute combinatorial dispatching decision problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1859-1873, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:28:y:2001:i:3-4:p:441-455. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.