IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v27y2000i4p451-460.html
   My bibliography  Save this article

Outliers and influential observations in the structural errors-in-variables model

Author

Listed:
  • Myung Geun Kim

Abstract

The influence of observations on the parameter estimates for the simple structural errors-in-variables model with no equation error is investigated using the local influence method. Residuals themselves are not sufficient for detecting outliers. The likelihood displacement approach is useful for outlier detection especially when a masking phenomenon is present. An illustrative example is provided.

Suggested Citation

  • Myung Geun Kim, 2000. "Outliers and influential observations in the structural errors-in-variables model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(4), pages 451-460.
  • Handle: RePEc:taf:japsta:v:27:y:2000:i:4:p:451-460
    DOI: 10.1080/02664760050003632
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760050003632
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760050003632?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manuel Galea & Heleno Bolfarine & Filidor Vilcalabra, 2002. "Influence diagnostics for the structural errors-in-variables model under the Student-t distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(8), pages 1191-1204.
    2. Vidal, Ignacio & Arellano-Valle, Reinaldo B., 2010. "Bayesian inference for dependent elliptical measurement error models," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2587-2597, November.
    3. Filidor Labra & Reiko Aoki & Heleno Bolfarine, 2005. "Local influence in null intercept measurement error regression under a student_t model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(7), pages 723-740.
    4. Vidal, Ignacio & Iglesias, Pilar, 2008. "Comparison between a measurement error model and a linear model without measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 92-102, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:27:y:2000:i:4:p:451-460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.