IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v26y1999i4p447-459.html
   My bibliography  Save this article

Exact confidence intervals generated by conditional parametric bootstrapping

Author

Listed:
  • Magnar Lillegard
  • Steinar Engen

Abstract

Conditional parametric bootstrapping is defined as the samples obtained by performing the simulations in such a way that the estimator is kept constant and equal to the estimate obtained from the data. Order statistics of the bootstrap replicates of the parameter chosen in each simulation provide exact confidence intervals, in a probabilistic sense, in models with one parameter under quite general conditions. The method is still exact in the case of nuisance parameters when these are location and scale parameters, and the bootstrapping is based on keeping the maximum-likelihood estimates constant. The method is also exact if there exists a sufficient statistic for the nuisance parameters and if the simulations are performed conditioning on this statistic. The technique may also be used to construct prediction intervals. These are generally not exact, but are likely to be good approximations.

Suggested Citation

  • Magnar Lillegard & Steinar Engen, 1999. "Exact confidence intervals generated by conditional parametric bootstrapping," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(4), pages 447-459.
  • Handle: RePEc:taf:japsta:v:26:y:1999:i:4:p:447-459
    DOI: 10.1080/02664769922331
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664769922331
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664769922331?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul H. Garthwaite & Stephen T. Buckland, 1992. "Generating Monte Carlo Confidence Intervals by the Robbins–Monro Process," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(1), pages 159-171, March.
    2. N/A, 1984. "Confidence Intervals," National Institute Economic Review, National Institute of Economic and Social Research, vol. 109(1), pages 33-37, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Menéndez, P. & Fan, Y. & Garthwaite, P.H. & Sisson, S.A., 2014. "Simultaneous adjustment of bias and coverage probabilities for confidence intervals," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 35-44.
    2. Bruce E. Hansen, 1999. "The Grid Bootstrap And The Autoregressive Model," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 594-607, November.
    3. (Yale) Gong, Yeming & Yücesan, Enver, 2012. "Stochastic optimization for transshipment problems with positive replenishment lead times," International Journal of Production Economics, Elsevier, vol. 135(1), pages 61-72.
    4. Halkos, George & Kevork, Ilias, 2002. "Confidence intervals in stationary autocorrelated time series," MPRA Paper 31840, University Library of Munich, Germany.
    5. Chung, Hie-Choon & Han, Chien-Pai, 2009. "Conditional confidence intervals for classification error rate," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4358-4369, October.
    6. Halkos, George & Kevork, Ilias, 2006. "Estimating population means in covariance stationary process," MPRA Paper 31843, University Library of Munich, Germany.
    7. Pasquariello, Paolo, 2002. "Uncertainty of trading rules in currency markets: an application of non-parametric bootstrapping," Journal of Multinational Financial Management, Elsevier, vol. 12(2), pages 107-133, April.
    8. Michelle Liou & Lien-Chi Yu, 1991. "Assessing statistical accuracy in ability estimation: A bootstrap approach," Psychometrika, Springer;The Psychometric Society, vol. 56(1), pages 55-67, March.
    9. Gatta, Valerio & Marcucci, Edoardo & Scaccia, Luisa, 2015. "On finite sample performance of confidence intervals methods for willingness to pay measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 169-192.
    10. Lee, Stephen M.S. & Young, G. Alastair, 2005. "Parametric bootstrapping with nuisance parameters," Statistics & Probability Letters, Elsevier, vol. 71(2), pages 143-153, February.
    11. G. Alastair Young, 2003. "Better bootstrapping by constrained prepivoting," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(2), pages 227-242.
    12. Hristos Tyralis & Demetris Koutsoyiannis & Stefanos Kozanis, 2013. "An algorithm to construct Monte Carlo confidence intervals for an arbitrary function of probability distribution parameters," Computational Statistics, Springer, vol. 28(4), pages 1501-1527, August.
    13. Chen, Binchao & Matis, Timothy I., 2013. "A flexible dispatching rule for minimizing tardiness in job shop scheduling," International Journal of Production Economics, Elsevier, vol. 141(1), pages 360-365.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:26:y:1999:i:4:p:447-459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.