IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v26y1999i2p257-272.html
   My bibliography  Save this article

Estimation of surgeon effects in the analysis of post-operative colorectal cancer patients data

Author

Listed:
  • K. K. W. Yau

Abstract

There has been increasing interest in the assessment of surgeon effects for survival data of post-operative cancer patients. In particular, the measurement of surgeon's surgical performance after eliminating significant risk variables is considered. The generalized linear mixed model approach, which assumes a log-normal-distributed surgeon effects in the hazard function, is adopted to assess the random surgeon effects of post-operative colorectal cancer patients data. The method extends the traditional Cox's proportional hazards regression model, by including a random component in the linear predictor. Estimation is accomplished by constructing an appropriate log-likelihood function in the spirit of the best linear unbiased predictor method and extends to obtain residual maximum likelihood estimates. As a result of the non-proportionality of the hazard of colon and rectal cancer, the data are analyzed separately according to these two kinds of cancer. Significant risk variables are identified. The 'predictions' of random surgeon effects are obtained and their association with the rank of surgeon is examined.

Suggested Citation

  • K. K. W. Yau, 1999. "Estimation of surgeon effects in the analysis of post-operative colorectal cancer patients data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(2), pages 257-272.
  • Handle: RePEc:taf:japsta:v:26:y:1999:i:2:p:257-272
    DOI: 10.1080/02664769922593
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664769922593
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664769922593?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kelvin Yau & Karen Yip & H. K. Yuen, 2003. "Modelling repeated insurance claim frequency data using the generalized linear mixed model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(8), pages 857-865.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:26:y:1999:i:2:p:257-272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.