IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v26y1999i1p129-160.html
   My bibliography  Save this article

Shewhart control charts for the scale parameter of a Weibull control variable with fixed and variable sampling intervals

Author

Listed:
  • M. F. Ramalhoto
  • M. Morais

Abstract

In this paper, we are concerned with pure statistical Shewhart control charts for the scale parameter of the three-parameter Weibull control variable, where, and are the location, the scale and the shape parameters, respectively, with fixed (FSI) and variable (VSI) sampling intervals. The parameters and are assumed to be known. We consider two-sided, and lower and upper one-sided Shewhart control charts and their FSI and VSI versions . They jointly control the mean and the variance of the Weibull control variable X. The pivotal statistic of those control charts is the maximum-likelihood estimator of for the Nth random sample XN=(X1N,X2N,…,XnN) of the Weibull control variable X. The design and performance of these control charts are studied. Two criteria, i.e. 'comparability criterion' (or 'matched criterion') under control and 'primordial criterion', are imposed on their design. The performance of these control charts is measured using the function average time to signal. For the VSI versions, the constant which defines the partition of the 'continuation region' is obtained through the 'comparability criterion' under control. The monotonic behaviour of the function average time to signal in terms of the parameters (magnitude of the shift suff ered by the target value 0), and is studied. We show that the function average time to signal of all the control charts studied in this paper does not depend on the value of the parameter or on 0, and, under control, does not depend on the parameter, when Delta (the probability of a false alarm) and n (sample size) are fixed. All control charts satisfy the 'primordial criterion' and, for fixed, on average, they all (except the two-sided VSI, for which we were not able to ascertain proof) are quicker in detecting the shift as increases. We conjecture - and we are not contradicted by the numerical example considered - that the same is true for the two-sided VSI control chart. We prove that, under the average time to signal criterion, the VSI versions are always preferable to their FSI versions. In the case of one-sided control charts, under the 'comparability criterion', the VSI version is always preferable to the FSI version, and this advantage increases with and the extent of the shift. Our one-sided control charts perform better and have more powerful statistical properties than does our two-sided control chart. The numerical example where n=5,0=1,=0.5, 1.0, 2.0, and Delta=1/370.4 is presented for the two-sided, and the lower and upper one-sided control charts. These numerical results are presented in tables and in figures. The joint influence of the parameters and in the function average time to signal is illustrated.

Suggested Citation

  • M. F. Ramalhoto & M. Morais, 1999. "Shewhart control charts for the scale parameter of a Weibull control variable with fixed and variable sampling intervals," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(1), pages 129-160.
  • Handle: RePEc:taf:japsta:v:26:y:1999:i:1:p:129-160
    DOI: 10.1080/02664769922700
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664769922700
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664769922700?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. F. Desmond & G. R. Chapman, 1993. "Modelling Task Completion Data with Inverse Gaussian Mixtures," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 42(4), pages 603-613, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marianne Frisén, 2003. "Statistical Surveillance. Optimality and Methods," International Statistical Review, International Statistical Institute, vol. 71(2), pages 403-434, August.
    2. Sofia Paulino & Manuel Cabral Morais & Sven Knoth, 2019. "On ARL-unbiased c-charts for INAR(1) Poisson counts," Statistical Papers, Springer, vol. 60(4), pages 1021-1038, August.
    3. Sürücü, Barış & Sazak, Hakan S., 2009. "Monitoring reliability for a three-parameter Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 503-508.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      More about this item

      Statistics

      Access and download statistics

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:26:y:1999:i:1:p:129-160. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.