IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v25y1998i2p155-171.html
   My bibliography  Save this article

A review of image-warping methods

Author

Listed:
  • C. A. Glasbey
  • K. V. Mardia

Abstract

Image warping is a transformation which maps all positions in one image plane to positions in a second plane. It arises in many image analysis problems, whether in order to remove optical distortions introduced by a camera or a particular viewing perspective, to register an image with a map or template, or to align two or more images. The choice of warp is a compromise between a smooth distortion and one which achieves a good match. Smoothness can be ensured by assuming a parametric form for the warp or by constraining it using differential equations. Matching can be specified by points to be brought into alignment, by local measures of correlation between images, or by the coincidence of edges. Parametric and non-parametric approaches to warping, and matching criteria, are reviewed.

Suggested Citation

  • C. A. Glasbey & K. V. Mardia, 1998. "A review of image-warping methods," Journal of Applied Statistics, Taylor & Francis Journals, vol. 25(2), pages 155-171.
  • Handle: RePEc:taf:japsta:v:25:y:1998:i:2:p:155-171
    DOI: 10.1080/02664769823151
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664769823151
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664769823151?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohammed Bennani Dosse & Jos Berge, 2010. "Anisotropic Orthogonal Procrustes Analysis," Journal of Classification, Springer;The Classification Society, vol. 27(1), pages 111-128, March.
    2. R. G. Aykroyd & K. V. Mardia, 2003. "A wavelet approach to shape analysis for spinal curves," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(6), pages 605-623.
    3. A. E. Madrid & J. M. Angulo & J. Mateu, 2016. "Point Pattern Analysis of Spatial Deformation and Blurring Effects on Exceedances," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(3), pages 512-530, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:25:y:1998:i:2:p:155-171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.