IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v36y2024i3p863-890.html
   My bibliography  Save this article

Penalised estimation of partially linear additive zero-inflated Bernoulli regression models

Author

Listed:
  • Minggen Lu
  • Chin-Shang Li
  • Karla D. Wagner

Abstract

We develop a practical and computationally efficient penalised estimation approach for partially linear additive models to zero-inflated binary outcome data. To facilitate estimation, B-splines are employed to approximate unknown nonparametric components. A two-stage iterative expectation-maximisation (EM) algorithm is proposed to calculate penalised spline estimates. The large-sample properties such as the uniform convergence and the optimal rate of convergence for functional estimators, and the asymptotic normality and efficiency for regression coefficient estimators are established. Further, two variance-covariance estimation approaches are proposed to provide reliable Wald-type inference for regression coefficients. We conducted an extensive Monte Carlo study to evaluate the numerical properties of the proposed penalised methodology and compare it to the competing spline method [Li and Lu. ‘Semiparametric Zero-Inflated Bernoulli Regression with Applications’, Journal of Applied Statistics, 49, 2845–2869]. The methodology is further illustrated by an egocentric network study.

Suggested Citation

  • Minggen Lu & Chin-Shang Li & Karla D. Wagner, 2024. "Penalised estimation of partially linear additive zero-inflated Bernoulli regression models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 36(3), pages 863-890, July.
  • Handle: RePEc:taf:gnstxx:v:36:y:2024:i:3:p:863-890
    DOI: 10.1080/10485252.2023.2275056
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2023.2275056
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2023.2275056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:36:y:2024:i:3:p:863-890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.