IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v36y2024i3p673-705.html
   My bibliography  Save this article

A varying coefficient model with matrix valued covariates

Author

Listed:
  • Hong-Fan Zhang

Abstract

Modern data are often collected in a matrix form. In this paper, we consider modelling the varying coefficient regression with matrix valued covariate X and scalar index variable U. The proposed model simultaneously makes principal component analysis for both the row and column dimensions of the matrix objects, maintaining the matrix structure while achieving substantial dimension reduction. We develop an iterative estimation method for the involved principal parameters and nonparametric functions. Under regularity conditions, the asymptotic distributions of the estimators are derived. In addition, by incorporating the estimation with the adaptive group Lasso and the group SCAD penalties, variables of X in entire rows or columns are selected. The proximal gradient algorithm is further utilised to solve the regularised optimisation problems. The asymptotic properties of the penalised estimators are also studied. Our model and estimation methods are demonstrated by simulated experiments. Real applications to the primary biliary cirrhosis (PBC) data reveal that the effects of the blood measurements to the survival time vary with levels of age.

Suggested Citation

  • Hong-Fan Zhang, 2024. "A varying coefficient model with matrix valued covariates," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 36(3), pages 673-705, July.
  • Handle: RePEc:taf:gnstxx:v:36:y:2024:i:3:p:673-705
    DOI: 10.1080/10485252.2023.2238841
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2023.2238841
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2023.2238841?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:36:y:2024:i:3:p:673-705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.