IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v35y2023i2p302-322.html
   My bibliography  Save this article

Nonparametric regression with responses missing at random and the scale depending on auxiliary covariates

Author

Listed:
  • Tian Jiang

Abstract

Nonparametric regression with missing at random (MAR) responses, univariate regression component of interest, and the scale function depending on both the predictor and auxiliary covariates, is considered. The asymptotic theory suggests that both heteroscedasticity and MAR mechanism affect the sharp constant of the minimax mean integrated squared error (MISE) convergence. Our sharp minimax procedure is based on the estimation of unknown nuisance scale function, design density and availability likelihood. The estimator is adaptive to the missing mechanism and unknown smoothness of the estimated regression function. Simulation studies and real examples also justify practical feasibility of the proposed method for this complex regression setting.

Suggested Citation

  • Tian Jiang, 2023. "Nonparametric regression with responses missing at random and the scale depending on auxiliary covariates," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 35(2), pages 302-322, April.
  • Handle: RePEc:taf:gnstxx:v:35:y:2023:i:2:p:302-322
    DOI: 10.1080/10485252.2022.2149749
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2022.2149749
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2022.2149749?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:35:y:2023:i:2:p:302-322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.