IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v32y2020i2p428-451.html
   My bibliography  Save this article

Spatial autoregressive partially linear varying coefficient models

Author

Listed:
  • Jingru Mu
  • Guannan Wang
  • Li Wang

Abstract

In this article, we consider a class of partially linear spatially varying coefficient autoregressive models for data distributed over complex domains. We propose approximating the varying coefficient functions via bivariate splines over triangulation to deal with the complex boundary of the spatial domain. Under some regularity conditions, the estimated constant coefficients are asymptotically normally distributed, and the estimated varying coefficients are consistent and possess the optimal convergence rate. A penalized bivariate spline estimation method with a more flexible choice of triangulation is proposed. We further develop a fast algorithm to calculate the geodesic distance. The proposed method is much more computationally efficient than the local smoothing methods, and thus capable of handling large scales of spatial data. In addition, we propose a model selection approach to identify predictors with constant and varying effects. The performance of the proposed method is evaluated by simulation examples and the Sydney real estate dataset.

Suggested Citation

  • Jingru Mu & Guannan Wang & Li Wang, 2020. "Spatial autoregressive partially linear varying coefficient models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 32(2), pages 428-451, April.
  • Handle: RePEc:taf:gnstxx:v:32:y:2020:i:2:p:428-451
    DOI: 10.1080/10485252.2020.1759596
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2020.1759596
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2020.1759596?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Fangzheng & Tang, Yanlin & Zhu, Huichen & Zhu, Zhongyi, 2022. "Spatially clustered varying coefficient model," Journal of Multivariate Analysis, Elsevier, vol. 192(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:32:y:2020:i:2:p:428-451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.