IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v32y2020i1p157-184.html
   My bibliography  Save this article

Asymptotic distribution-free change-point detection based on interpoint distances for high-dimensional data

Author

Listed:
  • Jun Li

Abstract

Recent advances have greatly facilitated the collection of high-dimensional data in many fields. Often the dimension of the data is much larger than the sample size, the so-called high dimension, low sample size setting. One important research problem is how to develop efficient change-point detection procedures for this new setting. Thanks to their simplicity of computation, interpoint distance-based procedures provide a potential solution to this problem. However, most of the existing distance-based procedures fail to fully utilise interpoint distances, and as a result, they suffer significant loss of power. In this paper, we propose a new asymptotic distribution-free distance-based change-point detection procedure for the high dimension, low sample size setting. The proposed procedure is proven to be consistent for detecting both location and scale changes and can also provide a consistent estimator for the change-point. Our simulation study and real data analysis show that it significantly outperforms the existing methods across a variety of settings.

Suggested Citation

  • Jun Li, 2020. "Asymptotic distribution-free change-point detection based on interpoint distances for high-dimensional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 32(1), pages 157-184, January.
  • Handle: RePEc:taf:gnstxx:v:32:y:2020:i:1:p:157-184
    DOI: 10.1080/10485252.2019.1710505
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2019.1710505
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2019.1710505?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ping‐Shou Zhong, 2023. "Homogeneity tests of covariance for high‐dimensional functional data with applications to event segmentation," Biometrics, The International Biometric Society, vol. 79(4), pages 3332-3344, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:32:y:2020:i:1:p:157-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.