IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v31y2019i2p289-314.html
   My bibliography  Save this article

Asymptotics of bivariate penalised splines

Author

Listed:
  • Luo Xiao

Abstract

We study the class of bivariate penalised splines that use tensor product splines and a smoothness penalty. Similar to Claeskens, G., Krivobokova, T., and Opsomer, J.D. [(2009), ‘Asymptotic Properties of Penalised Spline Estimators’, Biometrika, 96(3), 529–544] for the univariate penalised splines, we show that, depending on the number of knots and penalty, the global asymptotic convergence rate of bivariate penalised splines is either similar to that of tensor product regression splines or to that of thin plate splines. In each scenario, the bivariate penalised splines are found rate optimal in the sense of Stone, C.J. [(12, 1982), ‘Optimal Global Rates of Convergence for Nonparametric Regression’, The Annals of Statistics, 10(4), 1040–1053] for a corresponding class of functions with appropriate smoothness. For the scenario where a small number of knots is used, we obtain expressions for the local asymptotic bias and variance and derive the point-wise and uniform asymptotic normality. The theoretical results are applicable to tensor product regression splines.

Suggested Citation

  • Luo Xiao, 2019. "Asymptotics of bivariate penalised splines," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 31(2), pages 289-314, April.
  • Handle: RePEc:taf:gnstxx:v:31:y:2019:i:2:p:289-314
    DOI: 10.1080/10485252.2018.1563295
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2018.1563295
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2018.1563295?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Israel Martínez‐Hernández & Marc G. Genton, 2021. "Nonparametric trend estimation in functional time series with application to annual mortality rates," Biometrics, The International Biometric Society, vol. 77(3), pages 866-878, September.
    2. Denis Agniel & Layla Parast, 2021. "Evaluation of longitudinal surrogate markers," Biometrics, The International Biometric Society, vol. 77(2), pages 477-489, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:31:y:2019:i:2:p:289-314. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.