IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v30y2018i4p1049-1071.html
   My bibliography  Save this article

Fourier transform approach for inverse dimension reduction method

Author

Listed:
  • Jiaying Weng
  • Xiangrong Yin

Abstract

Estimating an inverse regression space is especially important in sufficient dimension reduction. However, it typically requires a tuning parameter, such as the number of slices in a slicing method or bandwidth selection in a kernel estimation approach. Such a requirement not only affects the accuracy of estimates in a finite sample, but also increases difficulties for multivariate models. In this paper, we use a Fourier transform approach to avoid such difficulties and incorporate multivariate models. We further develop a Fourier transform approach to deal with variable selection, categorical predictor variables, and large p, small n data. To test the dimension, asymptotic results are obtained. Simulation studies and data analysis show the efficacy of our proposed methods.

Suggested Citation

  • Jiaying Weng & Xiangrong Yin, 2018. "Fourier transform approach for inverse dimension reduction method," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(4), pages 1049-1071, October.
  • Handle: RePEc:taf:gnstxx:v:30:y:2018:i:4:p:1049-1071
    DOI: 10.1080/10485252.2018.1515432
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2018.1515432
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2018.1515432?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weng, Jiaying, 2022. "Fourier transform sparse inverse regression estimators for sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    2. S. Yaser Samadi & Tharindu P. De Alwis, 2023. "Fourier Methods for Sufficient Dimension Reduction in Time Series," Papers 2312.02110, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:30:y:2018:i:4:p:1049-1071. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.