IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v30y2018i3p523-555.html
   My bibliography  Save this article

Nonparametric low-frequency Lévy copula estimation in a general framework

Author

Listed:
  • Christian Palmes
  • Benedikt Funke
  • Babak Sayyid Hosseini

Abstract

Let X be a d-dimensional Lévy process. Given the low-frequency observations $ X_t $ Xt, $ t=1,\ldots ,n $ t=1,…,n, the dependence structure of the jumps of X is estimated. In general, the Lévy measure ν describes the average jump behaviour in a time unit. Thus the aim is to estimate the dependence structure of ν by estimating the so-called Lévy copula $ \mathfrak {C} $ C of ν. We generalise known one-dimensional low-frequency techniques to construct a Lévy copula estimator $ \hat {\mathfrak {C}}_n $ Cˆn based on the above-mentioned n observations and prove $ \hat {\mathfrak {C}}_n \to \mathfrak {C} $ Cˆn→C, $ n\to \infty $ n→∞, uniformly on compact sets bounded away from zero with the rate of convergence $ \sqrt {\log n} $ log⁡n that is optimal in a certain sense. This convergence holds under quite general assumptions which also include Lévy triplets $ (\Sigma , \nu , \alpha ) $ (Σ,ν,α) with non-vanishing Brownian part $ \Sigma \neq 0 $ Σ≠0 and ν of arbitrary Blumenthal–Getoor index $ 0\le \beta \le 2 $ 0≤β≤2.

Suggested Citation

  • Christian Palmes & Benedikt Funke & Babak Sayyid Hosseini, 2018. "Nonparametric low-frequency Lévy copula estimation in a general framework," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(3), pages 523-555, July.
  • Handle: RePEc:taf:gnstxx:v:30:y:2018:i:3:p:523-555
    DOI: 10.1080/10485252.2018.1474215
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2018.1474215
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2018.1474215?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:30:y:2018:i:3:p:523-555. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.