IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v30y2018i2p448-471.html
   My bibliography  Save this article

Remember the curse of dimensionality: the case of goodness-of-fit testing in arbitrary dimension

Author

Listed:
  • Ery Arias-Castro
  • Bruno Pelletier
  • Venkatesh Saligrama

Abstract

Despite a substantial literature on nonparametric two-sample goodness-of-fit testing in arbitrary dimensions, there is no mention there of any curse of dimensionality. In fact, in some publications, a parametric rate is derived. As we discuss below, this is because a directional alternative is considered. Indeed, even in dimension one, Ingster, Y. I. [(1987). Minimax testing of nonparametric hypotheses on a distribution density in the l_p metrics. Theory of Probability & Its Applications, 31(2), 333–337] has shown that the minimax rate is not parametric. In this paper, we extend his results to arbitrary dimension and confirm that the minimax rate is not only nonparametric, exhibits but also a prototypical curse of dimensionality. We further extend Ingster's work to show that the chi-squared test achieves the minimax rate. Moreover, we show that the test adapts to the intrinsic dimensionality of the data. Finally, in the spirit of Ingster, Y. I. [(2000). Adaptive chi-square tests. Journal of Mathematical Sciences, 99(2), 1110–1119], we consider a multiscale version of the chi-square test, showing that one can adapt to unknown smoothness without much loss in power.

Suggested Citation

  • Ery Arias-Castro & Bruno Pelletier & Venkatesh Saligrama, 2018. "Remember the curse of dimensionality: the case of goodness-of-fit testing in arbitrary dimension," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(2), pages 448-471, April.
  • Handle: RePEc:taf:gnstxx:v:30:y:2018:i:2:p:448-471
    DOI: 10.1080/10485252.2018.1435875
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2018.1435875
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2018.1435875?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jikai Jin & Vasilis Syrgkanis, 2024. "Structure-agnostic Optimality of Doubly Robust Learning for Treatment Effect Estimation," Papers 2402.14264, arXiv.org, revised Mar 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:30:y:2018:i:2:p:448-471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.