IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v30y2018i2p308-331.html
   My bibliography  Save this article

Statistical inference on transformation models: a self-induced smoothing approach

Author

Listed:
  • Junyi Zhang
  • Zhezhen Jin
  • Yongzhao Shao
  • Zhiliang Ying

Abstract

This paper deals with a general class of transformation models that contains many important semiparametric regression models as special cases. It develops a self-induced smoothing for the maximum rank correlation estimator, resulting in simultaneous point and variance estimation. The self-induced smoothing does not require bandwidth selection, yet provides the right amount of smoothness so that the estimator is asymptotically normal with mean zero (unbiased) and variance–covariance matrix consistently estimated by the usual sandwich-type estimator. An iterative algorithm is given for the variance estimation and shown to numerically converge to a consistent limiting variance estimator. The approach is applied to a data set involving survival times of primary biliary cirrhosis patients. Simulation results are reported, showing that the new method performs well under a variety of scenarios.

Suggested Citation

  • Junyi Zhang & Zhezhen Jin & Yongzhao Shao & Zhiliang Ying, 2018. "Statistical inference on transformation models: a self-induced smoothing approach," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 30(2), pages 308-331, April.
  • Handle: RePEc:taf:gnstxx:v:30:y:2018:i:2:p:308-331
    DOI: 10.1080/10485252.2018.1424334
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2018.1424334
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2018.1424334?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yilong Zhang & Xiaoxia Han & Yongzhao Shao, 2021. "The ROC of Cox proportional hazards cure models with application in cancer studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(2), pages 195-215, April.
    2. Yu, Tao & Li, Pengfei & Chen, Baojiang & Yuan, Ao & Qin, Jing, 2023. "Maximum pairwise-rank-likelihood-based inference for the semiparametric transformation model," Journal of Econometrics, Elsevier, vol. 235(2), pages 454-469.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:30:y:2018:i:2:p:308-331. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.