IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v27y2015i2p181-193.html
   My bibliography  Save this article

Confidence intervals for probability density functions under strong mixing samples

Author

Listed:
  • Qingzhu Lei
  • Yongsong Qin

Abstract

It is shown that the empirical likelihood (EL) ratio statistic for a probability density function (p.d.f.) is asymptotically -type distributed under a strong mixing sample, which is used to obtain an EL-based confidence interval (CI) for the p.d.f. Results of a simulation study on the finite sample performance of the CI are reported.

Suggested Citation

  • Qingzhu Lei & Yongsong Qin, 2015. "Confidence intervals for probability density functions under strong mixing samples," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(2), pages 181-193, June.
  • Handle: RePEc:taf:gnstxx:v:27:y:2015:i:2:p:181-193
    DOI: 10.1080/10485252.2015.1037303
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2015.1037303
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2015.1037303?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roussas, George G., 2000. "Asymptotic normality of the kernel estimate of a probability density function under association," Statistics & Probability Letters, Elsevier, vol. 50(1), pages 1-12, October.
    2. Pham, Tuan D. & Tran, Lanh T., 1985. "Some mixing properties of time series models," Stochastic Processes and their Applications, Elsevier, vol. 19(2), pages 297-303, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Zhengyan & Li, Degui, 2007. "Asymptotic normality for L1-norm kernel estimator of conditional median under association dependence," Journal of Multivariate Analysis, Elsevier, vol. 98(6), pages 1214-1230, July.
    2. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    3. Roussas, George G., 1995. "Asymptotic normality of a smooth estimate of a random field distribution function under association," Statistics & Probability Letters, Elsevier, vol. 24(1), pages 77-90, July.
    4. Hwang, Eunju & Shin, Dong Wan, 2014. "Infinite-order, long-memory heterogeneous autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 339-358.
    5. Jasiński, Krzysztof, 2016. "Asymptotic normality of numbers of observations near order statistics from stationary processes," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 259-263.
    6. Rajae Azrak & Guy Mélard, 2022. "Autoregressive Models with Time-Dependent Coefficients—A Comparison between Several Approaches," Stats, MDPI, vol. 5(3), pages 1-21, August.
    7. Xiaofeng Shao, 2010. "A self‐normalized approach to confidence interval construction in time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(3), pages 343-366, June.
    8. Guessoum, Zohra & Ould Saïd, Elias & Sadki, Ourida & Tatachak, Abdelkader, 2012. "A note on the Lynden-Bell estimator under association," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1994-2000.
    9. Tsung-Lin Cheng & Hwai-Chung Ho & Xuewen Lu, 2008. "A Note on Asymptotic Normality of Kernel Estimation for Linear Random Fields on Z 2," Journal of Theoretical Probability, Springer, vol. 21(2), pages 267-286, June.
    10. Liang, Han-Ying & Fan, Guo-Liang, 2009. "Berry-Esseen type bounds of estimators in a semiparametric model with linear process errors," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 1-15, January.
    11. Pinkse, Joris, 1998. "A consistent nonparametric test for serial independence," Journal of Econometrics, Elsevier, vol. 84(2), pages 205-231, June.
    12. Masry, Elias, 2003. "Local polynomial fitting under association," Journal of Multivariate Analysis, Elsevier, vol. 86(2), pages 330-359, August.
    13. Chu, Ba, 2023. "A distance-based test of independence between two multivariate time series," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    14. Mehmet Caner & Bruce E. Hansen, 1998. "Threshold Autoregressions with a Near Unit Root," Working Papers 9821, Department of Economics, Bilkent University.
    15. De Gooijer, Jan G. & Gannoun, Ali & Zerom, Dawit, 2002. "Mean squared error properties of the kernel-based multi-stage median predictor for time series," Statistics & Probability Letters, Elsevier, vol. 56(1), pages 51-56, January.
    16. Jentsch, Carsten & Subba Rao, Suhasini, 2015. "A test for second order stationarity of a multivariate time series," Journal of Econometrics, Elsevier, vol. 185(1), pages 124-161.
    17. Bouezmarni, Taoufik & Rombouts, Jeroen V.K., 2010. "Nonparametric density estimation for positive time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 245-261, February.
    18. Barbe, P. & Doisy, M. & Garel, B., 1998. "Last passage time for the empirical mean of some mixing processes," Statistics & Probability Letters, Elsevier, vol. 40(3), pages 237-245, October.
    19. Li, Yongming & Yang, Shanchao & Zhou, Yong, 2008. "Consistency and uniformly asymptotic normality of wavelet estimator in regression model with associated samples," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2947-2956, December.
    20. Rehim Kılıç, 2016. "Tests for Linearity in Star Models: Supwald and Lm-Type Tests," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(5), pages 660-674, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:27:y:2015:i:2:p:181-193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.