IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v26y2014i2p385-411.html
   My bibliography  Save this article

Statistical estimation of quadratic Rényi entropy for a stationary m -dependent sequence

Author

Listed:
  • David Källberg
  • Nikolaj Leonenko
  • Oleg Seleznjev

Abstract

The Rényi entropy is a generalisation of the Shannon entropy and is widely used in mathematical statistics and applied sciences for quantifying the uncertainty in a probability distribution. We consider estimation of the quadratic Rényi entropy and related functionals for the marginal distribution of a stationary m -dependent sequence. The U -statistic estimators under study are based on the number of ε-close vector observations in the corresponding sample. A variety of asymptotic properties for these estimators are obtained (e.g. consistency, asymptotic normality, and Poisson convergence). The results can be used in diverse statistical and computer science problems whenever the conventional independence assumption is too strong (e.g. ε-keys in time series databases and distribution identification problems for dependent samples).

Suggested Citation

  • David Källberg & Nikolaj Leonenko & Oleg Seleznjev, 2014. "Statistical estimation of quadratic Rényi entropy for a stationary m -dependent sequence," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(2), pages 385-411, June.
  • Handle: RePEc:taf:gnstxx:v:26:y:2014:i:2:p:385-411
    DOI: 10.1080/10485252.2013.854438
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2013.854438
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2013.854438?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Qiying, 1999. "On Berry-Esséen rates for m-dependent U-statistics," Statistics & Probability Letters, Elsevier, vol. 41(2), pages 123-130, January.
    2. Tae Kim & Zhi-Ming Luo & Chiho Kim, 2011. "The central limit theorem for degenerate variable -statistics under dependence," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(3), pages 683-699.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vitor Hugo Ferreira & André da Costa Pinho & Dickson Silva de Souza & Bárbara Siqueira Rodrigues, 2021. "A New Clustering Approach for Automatic Oscillographic Records Segmentation," Energies, MDPI, vol. 14(20), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fu, Zhonghao & Hong, Yongmiao & Su, Liangjun & Wang, Xia, 2023. "Specification tests for time-varying coefficient models," Journal of Econometrics, Elsevier, vol. 235(2), pages 720-744.
    2. Rauf Ahmad, M. & Pavlenko, Tatjana, 2018. "A U-classifier for high-dimensional data under non-normality," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 269-283.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:26:y:2014:i:2:p:385-411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.